Аннотация рабочей программы дисциплины Философия Общая трудоемкость изучения дисциплины составляет 4 зачетные единицы (144 ч.)





НазваниеАннотация рабочей программы дисциплины Философия Общая трудоемкость изучения дисциплины составляет 4 зачетные единицы (144 ч.)
страница4/6
Дата публикации29.02.2016
Размер0.91 Mb.
ТипРеферат
100-bal.ru > Философия > Реферат
1   2   3   4   5   6

"Системы автоматического управления

электротехнологическими установками"



1. Цели и задачи дисциплины

Цели и задачи дисциплины – дать обучающимся по профилю "Электрические станции" знания в области современных автоматизированных систем контроля и управления производственными процессами в электрической части электростанций и подстанций.

2. Требования к уровню освоения содержания дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- готовностью использовать информационные технологии в своей предметной области (ПК-10);

- способностью использовать современные информационные технологии, управлять информацией с использованием прикладных программ деловой сферы деятельности; использовать сетевые компьютерные технологии, базы данных и пакеты прикладных программ в своей предметной области (ПК-19);

знать: представление о современных автоматизированных системах контроля и управления электрооборудования электростанций и подстанций

уметь: использовать полученные знания в дальнейшей производственной работе

владеть: практическими методами исследований явлений в электроэнергетических системах, пакетами пpикладных пpогpамм для решения задач режимов работы электроэнергетических систем

  1. Содержание дисциплины. Основные разделы

Структура автоматизированных систем управления технологическими процессами (АСУ) электрооборудованием электростанций и подстанций.

Схемы управления на традиционной аппаратуре и с использованием микропроцессорных средств.

Контроллеры, модули устройств сопряжения с объектом (УСО). Типовые входные и выходные сигналы для управления электрооборудованием.

Программное обеспечение для разработки АСУ. Разработка операторского интерфейса, конфигурирование программно-технических комплексов.

Алгоритмы управления электродвигателями собственных нужд электростанций и подстанций.

Аннотация программы дисциплины

«Производственный менеджмент»
Менеджмент - тип управления организацией в рыночной системе хозяйствования, обеспечивающий повышение эффективности производства посредствам таких функций управления, как планирование, мотивация, организация, контроль, учет, анализ и регулирование.

Аннотация примерной рабочей программы дисциплины «Производственный менеджмент» составлена на основании федерального государственного образовательного стандарта третьего поколения. Предназначена для студентов дневной формы, обучающихся по направлению 140400 «Электроэнергетика и электротехника»(бакалавр) для профиля «Электрические станции».

Цель и задачи дисциплины:

Целью учебной дисциплины «Производственный менеджмент» является:

  • овладение студентами теоретическими знаниями и практическими навыками в области принятия управленческих решений, связанных с производственной (операционной) деятельностью предприятий.

  • развитие у студента профессиональных и общенаучных компетенций, необходимых для успешного развития карьеры в области энергетики и управления устойчивым развитием организаций энергетического сектора.

Задачей изучения дисциплины является:

  • ознакомить и обучить студентов правильному использованию терминологии, применяемой в сфере производственного менеджмента;

  • ознакомить студентов с принципами и методами управления производственной (операционной) деятельностью современного предприятия;

  • сформировать у студентов навыки использования широкого спектра методов и средств принятия решений в области производственного (операционного) менеджмента.

Основные дидактические единицы (разделы): общая теория управления; закономерности управления различными системами; управление социально-экономическими системами (организацией); формирование концепции менеджмента в энергетических компаниях; знание научных школ менеджмента в области энергоэффективности; реализацию функций менеджмента в процессах энергосбережения (таких как планирование, организация, мотивация, контроль, энергоаудит, энергорегулирование и др.); формирование, анализ и совершенствование структуры системы менеджмента с учетом среды, в которой протекают процессы энергообеспечения; определение места человека в системе менеджмента с распределением ролей менеджеров в энергопроизводящих и энергопотребляющих организациях; управление организационными изменениями с учетом экономической эффективности и качества управления предприятием в целом.

Компетенции обучающегося, формируемые в результате освоения дисциплины: ОК-1,ОК-2,ОК-3,ОК-4,ОК-6,ОК-7,ОК-9,ОК-11. ПК-1,ПК-2,ПК-4, ПК-6,ПК-7,ПК-10.

В результате освоения дисциплины студент должен:

Знать: особенности управления производством современного предприятия, иметь представление о субъекте и объекте производственного менеджмента;

Уметь: разрабатывать рациональную систему организации производства на предприятии;

Владеть: специальной терминологией в области производственного менеджмента; навыками по работе с источниками информации, методами принятия объективных решений в области производственного менеджмента, их оценки и анализа.

Аннотация программы дисциплины

«Экономика и организация энергетического производства»
Аннотация примерной рабочей программы дисциплины «Экономика и организация энергетического производства» составлена на основании федерального государственного образовательного стандарта третьего поколения. Предназначена для студентов дневной формы, обучающихся по направлению подготовки 140400 «Электроэнергетика и электротехника» для профиля «Электрические станции».

Цели и задачи дисциплины

Целью изучения дисциплины является: формирование комплексных знаний в области экономики и организации энергетического производства, развития навыков творческого использования теоретических знаний на практике.

Задачей изучения дисциплины является: развитие у студентов экономического мышления; закрепление профессиональной терминологии; раскрытие сущности экономических показателей и методов их расчетов; ознакомление с механизмами, используемыми в управлении техническими системами в энергетике.

Основные дидактические единицы (разделы): предприятие как субъект и объект предпринимательской деятельности; внешняя и внутренняя среда предприятия; производственные ресурсы предприятия; продукция энергопредприятий; экономические результаты деятельности предприятия; факторы развития предприятия; организация производственного процесса в энергетике, режимы нагрузки и факторы их определяющие, эксплуатационные свойства элементов энергосистем и покрытие графиков нагрузки; производственные мощности; организация и планирование ремонтов в энергетике.

Компетенции обучающегося, формируемые в результате освоения дисциплины: ОК-2, ОК-4, ОК-8, ОК-9, ОК-10, ОК-12, ОК-13, ПК-3, ПК-20, ПК-21.

В результате изучения дисциплины студент должен:

знать: экономические основы функционирования предприятия энергетики; состав и структуру экономических ресурсов предприятия; состав и структуру затрат предприятия; методы оценки результатов хозяйственной деятельности предприятия, эффективности использования его экономических ресурсов.

уметь: анализировать показатели эффективности использования ресурсов предприятия; группировать затраты предприятия; оценивать эффективность деятельности предприятия; систематизировать и обобщать информацию; интерпретировать прогнозы развития отрасли.

владеть: специальной терминологией в области экономики предприятия; навыками по работе с источниками информации для мониторинга факторов внешней и внутренней среды; методиками расчета основных показателей деятельности энергетических предприятий.
Аннотация программы дисциплины

«Компьютерные технологии»

1. Цели и задачи дисциплины.

Целью дисциплины является формирование мировоззрения и развитие системного мышления студентов.

Задачей изучения дисциплины является приобретение студентами практических навыков алгоритмизации, программирования; овладение персональным компьютером на пользовательском уровне, формирование умения работать с базами данных.

2. Требования к уровню освоения содержания дисциплины.

Процесс изучения дисциплины направлен на формирование следующих компетенций:

– способность и готовность применять основные методы, способы и средства получения, хранения, переработки информации, готов использовать компьютер как средство работы с информацией (ОК-11);

– способность понимать сущность и значение информации в развитии современного информационного общества, сознавать опасности и угрозы, возникающие в этом процессе, соблюдать основные требования информационной безопасности, с том числе защиты государственной тайны (ОК-15);

– способность и готовность использовать информационные технологии, в том числе современные средства компьютерной графики в своей предметной области (ПК-1);

– готовность выявить естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, и способность привлечь для их решения соответствующий физико-математический аппарат (ПК-3).

В результате изучения дисциплины студент должен:

знать: принципы применения современных информационных технологий в науке и предметной деятельности;

уметь: использовать информационные технологии при изучении естественнонаучных дисциплин;

владеть: методами поиска и обработки информации как вручную, так и с применением современных информационных технологий.

3. Содержание дисциплины. Основные разделы.

Понятие информации. Принцип работы компьютера. Алгоритмы и алгоритмизация. Программирование. Программное обеспечение. Обзор языков высокого уровня. Технология программирования. Базы данных. Телекоммуникации. Модели решения функциональных и вычислительных задач. Аппаратура компьютера. Технические средства реализации информационных процессов. Интегрированные автоматизированные системы.
Аннотация программы учебной дисциплины

«Безопасность жизнедеятельности»

  1. Цель дисциплины

Целью изучения дисциплины является: формирование профессиональной культуры безопасности, т.е. готовности и способности специалиста использовать в профессиональной деятельности приобретенную совокупность знаний, умений и навыков для обеспечения безопасности жизнедеятельности, характер мышления, при котором вопросы безопасности рассматриваются в качестве приоритета.

Задачей дисциплины является: привитие каждому знаний о роли и значении учений о безопасности жизнедеятельности, защите окружающей среды и техносферной безопасности и усвоение того что деятельность по обеспечению безопасности человека и общества всегда первична по отношению к любой иной форме человеческой деятельности. Только в этих условиях возникает надежда на создание техносферы необходимого для человека и природы качества, сохраняется надежда на дальнейшее существование жизни на Земле.

  1. Требования к уровню освоения содержания дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций: ПК-5, ПК-6, ПК-36

В результате изучения дисциплины студент должен:

Знать: основные техносферные опасности, их свойства и характеристики, характер воздействия вредных и опасных факторов на человека и природную среду, методы защиты от них применительно к сфере своей профессиональной деятельности.

Уметь: идентифицировать основные опасности среды обитания человека, оценивать риск их реализации, выбирать методы защиты от опасностей применительно к сфере своей профессиональной деятельности и способы обеспечения комфортных условий жизнедеятельности.

Владеть: законодательными и правовыми актами в области безопасности и охраны окружающей среды, требованиями к безопасности технических регламентов в сфере профессиональной деятельности; способами и технологиями защиты в чрезвычайных ситуациях; понятийно-терминологическим аппаратом в области безопасности; навыками рационализации профессиональной деятельности с целью обеспечения безопасности и защиты окружающей среды.

  1. Содержание дисциплины. Основные разделы

Введение. Основные понятия и определения

Раздел. Теоретические основы БЖД

Раздел. Санитарно-гигиенические основы безопасности

Раздел. Промышленная безопасность

Раздел. Пожаровзрывобезопасность

Раздел. Защита населения и территории в чрезвычайных ситуациях (опасности при ЧС и защита от них).
Аннотация программы учебной дисциплины

«Метролгия»

Общая трудоемкость изучения дисциплины составляет 4 зачетных единицы (144 часа) – 5 семестр.

1. Цели и задачи дисциплины

Цель дисциплины - вооружить будущего бакалавра знаниями и навыками в области метрологии, определяющими его рациональное поведение и непосредственное практическое применение этих знаний и навыков в своей профессиональной деятельности.

Задачей изучения дисциплины является приобретение студентами практических навыков в области метрологии, электрических измерений, а

также научных и правовых основ стандартизации и сертификации.

Структура дисциплины (распределение трудоемкости по отдельным видам аудиторных занятий и самостоятельной работы): зачет ; самостоятельная работа - 72ч. ; лекции - 36ч. ; лабораторные работы -36 ч.

2. Требования к уровню освоения содержания дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

  • готовность использовать информационные технологии в своей предметной области (ПК-3);

  • способность использовать технические средства для измерения основных параметров электроэнергетических и электротехнических объектов и систем и происходящих в них процессов (ПК-11);

  • способность использовать нормативные документы по качеству, стандартизации и сертификации электроэнергетических и электротехнических объектов, элементы экономического анализа в практической деятельности (ПК-13);

  • способность выполнять экспериментальные исследования по заданной методике, обрабатывать результаты экспериментов (ПК-37);

В результате изучения дисциплины студент должен:

знать:

– современные методы и средства метрологического обеспечения; основные сведения об электрических измерениях и о технических средствах, используемых при электрических измерениях; основные поня­тия и определения в области стандартизации и сертификации.

уметь:

– принимать решения в области электроэнергетики и электротехники с учетом правильного выбора методов и средств измерений;

– оценивать погрешности измерительного эксперимента;

– обрабатывать результаты измерений;

– пользоваться нормативно-технической документацией.

владеть:

– методиками в области метрологии, электрических измерений; стандартизации и сертификации;

3. Содержание дисциплины. Основные разделы

Общие сведения в области метрологии, электрических измерений, стандартизации и сертификации. Математическая обработка результатов измерений. Погрешности средств измерений. Неопределенность измерений. Аналоговые электромеханические измерительные приборы. Масштабные измерительные преобразователи. Измерение мощности и энергии в цепях постоянного тока и переменного тока. Осциллографические измерения. Измерение магнитных и неэлектрических величин. Мостовые методы измерений параметров элементов электрических цепей. Цифровые измерительные приборы. Цели и задачи стандартизации. Основные понятия и определения. Виды, методы и формы стандартизации. Международные стандарты ИСО серии 9000. Информационное обеспечение в области стандартизации. Цели и принципы сертификации. Обязательная и добровольная сертификация. Сертификационные испытания. Системы сертификации.

Аннотация программы учебной дисциплины

«Основы теплотехники»

1. Цели и задачи дисциплины.

Цель дисциплины состоит в ознакомлении студентов с основными физическими моделями переноса теплоты и массы в неподвижных и движущихся средах, методами расчета потоков теплоты и массы, полей температуры и концентрации компонентов смесей, базирующимися на этих моделях, методами экспериментального изучения процессов тепломассообмена и определения переносных свойств.

Основными задачами изучения дисциплины являются:

Ознакомление студентов со способами переноса теплоты (массы), развитие способности обучаемых к физическому и математическому моделированию процессов переноса теплоты (массы), протекающих в реальных физических объектах, в частности, в установках энергетики.

2. Требования к уровню освоения содержания дисциплины.

Процесс изучения дисциплины направлен на формирование следующих компетенций:

– способность к обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения (ОК-1);

– готовность к самостоятельной, индивидуальной работе, принятию решений в рамках своей профессиональной компетенции (ОК-7);

– способность и готовность применять основные методы, способы и средства получения, хранения, переработки информации, готов использовать компьютер как средство работы с информацией (ОК-11);

– готовностью выявить естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, и способностью привлечь для их решения соответствующий физико-математический аппарат (ПК-3).

В результате изучения дисциплины студент должен:

знать: законы и основные физико-математические модели переноса теплоты и массы применительно к теплотехническим и электроэнергетическим установкам и системам;

уметь: рассчитывать температурные поля (поля концентраций веществ) в потоках технологических жидкостей и газов, в элементах конструкции тепловых и электроэнергетических установок с целью интенсификации процессов тепломассообмена, обеспечения нормального температурного режима работы элементов оборудования и минимизации потерь теплоты; рассчитывать передаваемые тепловые потоки;

владеть: основами расчета процессов тепломассопереноса в элементах теплотехнического и электротехнического оборудования.

3. Содержание дисциплины. Основные разделы.

Способы теплообмена; дифференциальное уравнение теплопроводности и его решения; система дифференциальных уравнений конвективного теплообмена; применение методов подобия и размерностей к изучению процессов конвективного теплообмена; теплоотдача и гидравлическое сопротивление при вынужденном течении в каналах, обтекании трубы и пучка труб; расчет коэффициентов теплоотдачи при свободной конвекции; теплообмен при фазовых превращениях; теплообмен излучением, сложный теплообмен; массообмен: поток массы компонента; вектор плотности потока массы; молекулярная диффузия: концентрационная диффузия, закон Фика; термо- и бародиффузия; массоотдача, математическое описание и аналогия процессов массо- и теплообмена; теплогидравлический расчет теплообменных аппаратов.

Аннотация программы учебной дисциплины

Теоретическая механика”
1. Цели и задачи дисциплины

Целью дисциплины является формирование у студентов знаний в области теоретической механики.

Задачей изучения дисциплины является приобретение студентами практических навыков в области теоретической механики, умения самостоятельно строить и исследовать математические и механические модели технических систем, квалифицированно применяя при этом основные алгоритмы высшей математики и используя возможности современных компьютеров и информационных технологий.

2. Требования к уровню освоения содержания дисциплины.

Процесс изучения дисциплины направлен на формирование следующих компетенций:

готовность к самостоятельной, индивидуальной работе, принятию решений в рамках своей профессиональной компетенции (ОК-7);

 способность и готовность использовать информационные технологии, в том числе современные средства компьютерной графики в своей предметной области (ПК-1);

 способность демонстрировать базовые знания в области естественнонаучных дисциплин и готовность использовать основные законы в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования (ПК-2);

готовность выявить естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, и способность привлечь для их решения соответствующий физико-математический аппарат (ПК-3).

В результате изучения дисциплины студент должен:

знать: основные понятия и законы статики, кинематики, динамики и аналитической механики;

уметь: использовать основные понятия, законы и модели механики.

3. Содержание дисциплины. Основные разделы

Статика. Приведение системы сил к простейшему виду. Условия равновесия абсолютно твёрдого тела и системы тел. Центр тяжести. Трение скольжения и трение качения.

Кинематика. Кинематика точки. Кинематика твёрдого тела (поступательное, вращательное, плоскопараллельное, сферическое, произвольное движения). Сложное движение точки и твёрдого тела.

Динамика. Динамика точки в инерциальной и неинерциальной системах отсчёта. Уравнения движения системы материальных точек. Общие теоремы динамики механических систем. Динамика твёрдого тела (поступательное, вращательное, плоскопараллельное, сферическое, произвольное движения). Принцип Даламбера. Элементы теории гироскопов. Теория удара.

Аналитическая механика. Принцип возможных перемещений. Общее уравнение динамики. Уравнения Лагранжа второго рода в обобщённых координатах. Вариационные принципы механики.
Аннотация программы учебной дисциплины

"Силовая электроника" 1.Цель и задачи дисциплины

Основной целью дисциплины является формирование у студентов прочной теоретической базы по характеристикам и принципу действия силовых электронных приборов, классификации, принципам действия и основным электромагнитным процессам в полупроводниковых преобразователях энергии, основным областям применения устройств силовой электроники, что позволит им успешно решать теоретические и практические задачи в их профессиональной деятельности, связанной с проектированием, испытаниями и эксплуатацией устройств силовой электроники.

Для достижения поставленной цели необходимо научить студентов:

  • понимать и использовать характеристики силовых электронных приборов;

  • основным алгоритмам управления, применяемым в силовых электронных устройствах;

  • правильно классифицировать полупроводниковые преобразователи электрической энергии и описывать основные электромагнитные процессы;

  • самостоятельно проводить расчеты по определению параметров и характеристик
    устройств силовой электроники:

  • самостоятельно проводить элементарные испытания электронных
    преобразователей энергии.

2. Требования к уровню освоения содержания дисциплины

Процесс изучения дисциплины должен быть направлен на формирование следующих компетенций:

  • способность разрабатывать простые схемы аналоговой, импульсной и цифровой электроники для электроэнергетических и электротехнических объектов (ПК-9);

  • способность использовать методы анализа и моделирования линейных и нелинейных цепей постоянного и переменного тока устройств силовой электроники (ПК-

п);

  • способность графически отображать геометрические образы изделий и объектов электронных схем и систем (ПК-12);

  • готовность обосновывать принятие конкретного технического решения при создании схем управления устройств силовой электроники электроэнергетического и электротехнического оборудования (ПК-14);

  • способность рассчитывать электронные схемы и элементы для вторичных цепей, устройств защиты и автоматики электроэнергетических объектов (ПК-15);

  • способность рассчитывать режимы работы электронных схем
    электроэнергетических установок различного назначения (ПК-16).

В результате изучения дисциплины "Силовая электроника" обучающиеся должны:

знать классификацию, назначение, основные схемотехнические решения устройств силовой электроники и понимать принцип действия и особенности применения силовых полупроводниковых приборов, знать особенности их конструкции

знать основные уравнения процессов, схемы замещения и характеристики и понимать принцип действия и алгоритмы управления в электронных преобразователях электрической энергии,

уметь использовать полученные знания при решении практических задач по проектированию, испытаниями и эксплуатации устройств силовой электроники, ставить и решать простейшие задачи моделирования силовых электронных устройств;

владеть навыками элементарных расчетов и испытаний силовых электронных преобразователей.

3. Содержание дисциплины. Основные разделы

Основные определения. Классификация силовых электронных устройств. Основные виды силовых ключей. Схемы управления (драйверы). Область безопасной работы. Защита силовых электронных ключей формированием траекторий переключения.

Особенности работы трансформаторов и реакторов на повышенных частотах. Потери мощности и способы их снижения. Выбор типа конденсаторов в устройствах силовой электроники. Охлаждение силовых электронных приборов.

Основные схемы выпрямления. Принципы действия, расчетные соотношения для элементов силовой техники. Коммутация и режимы работы выпрямителей, характеристики. Гармонический состав выпрямленного напряжения и первичных токов. КПД и коэффициент мощности. Работа на емкостную нагрузку и противо-ЭДС. Входные и выходные фильтры.

Инверторы, ведомые сетью, характеристики и режимы работы. Расширение областей работы (обеспечение работы в 4-х квадрантах комплексной плоскости параметров по стороне переменного тока). Резонансные инверторы. Автономные инверторы и преобразователей частоты. Структурные схемы управления.

Базовые структуры импульсных преобразователей — регуляторов постоянного тока. Электронные ключи с квазирезонансной коммутацией и их применением в преобразователях постоянного тока.

Области применения силовой электроники. Коммутационные аппараты. Электропривод постоянного и переменного токов. Светотехника. Электротехнология. Агрегаты бесперебойного питания. Вторичные источники электропитания.

Аннотация программы дисциплины

"Теория автоматического управления"

1. Цель и задачи дисциплины

Основной целью дисциплины является формирование у студентов прочной теоретической базы по современным методам исследования систем управления, которая позволит им успешно решать теоретические и практические задачи в их профессиональной деятельности, связанной с получением математического описания, моделированием, анализом, проектированием, испытаниями и эксплуатацией современных систем управления.

Для достижения поставленной цели необходимо научить студентов:

  • классифицировать объекты и системы управления и описывать происходящие в
    них динамические процессы.

  • анализировать структуру и математическое описание систем управления с целью
    определения областей их устойчивой и качественной работы.

- проводить синтез систем, их испытания и эксплуатацию.
2.Требования к уровню освоения содержания дисциплны

Процесс изучения дисциплины направлен на формирование следующих компетенций:

  • способность демонстрировать базовые знания в области естественнонаучных
    дисциплин и готовностью использовать основные законы в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования (ПК-2);

  • способность использовать методы анализа и моделирования линейных и нелинейных электрических цепей постоянного и переменного тока (ПК-11);

  • готовность понимать существо задач анализа и синтеза объектов в технической среде (ПК-41).

Обучающиеся должны освоить дисциплину на уровне, позволяющем им свободно ориентироваться в принципах действия, особенностях протекающих процессов, а также уравнениях и схемах, описывающих системы управления, строить теоретически и получать экспериментально их характеристики. Уровень освоения дисциплины должен позволять обучающимся решать задачи по расчету и проектированию, анализу устойчивости и моделированию современных систем управления.

В результате изучения дисциплины обучающиеся должны:

знать принцип действия современных систем управления и особенности протекающих в них процессов;

уметь использовать полученную в результате обучения теоретическую и практическую базу для получения математического описания объектов и систем в виде дифференциальных уравнений, структурных схем: построения их характеристик и моделирования;

уметь использовать полученные знания при решении практических задач по расчету, анализу устойчивости, качества, проектированию систем управления.

получить навыки по испытаниям и эксплуатации систем управления.

3. Содержание дисциплины. Основные разделы

Основные понятия управления. Функциональная схема и классификация систем автоматического управления. Принципы и законы автоматического управления. Математическое описание линейных систем управления. Преобразование Лапласа. Устойчивость, качество, точность и синтез линейных систем управления. Понятие и критерии устойчивости. Показатели качества систем. Методы синтеза по частотным характеристикам.

Дискретные системы и их описание. Релейные, цифровые и импульсные системы. Устойчивость, качество и синтез импульсных систем управления.

Нелинейные системы управления. Исследование систем на фазовой плоскости. Методы гармонической линеаризации. Критерии устойчивости нелинейных систем.

Многомерные линейные системы управления. Описание многомерных линейных динамических систем в пространстве состояний, моделирование, анализ и синтез многомерных систем управления.

Аннотация программы дисциплины

"Электрические и электронные аппараты"

1. Цель и задачи дисциплины.

Освоение теоретических основ и принципов работы электрических и электронных аппаратов (ЭЭА). Изучение основных электромагнитных, тепловых и дуговых процессов в ЭЭА, структур и принципов управления ЭЭА. Приобретение навыков использования физических и электротехнических законов для расчета узлов основных типов ЭЭА. Для решения поставленной цели необходимо научить студентов:

- классифицировать различные типы ЭЭА;

  • применять методы анализа различных процессов в ЭЭА, методы получения и
    определения взаимосвязи между различными процессами в ЭЭА;

  • проводить элементарные испытания ЭЭА.

2.Требования к уровню освоения содержания дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

  • готовность выявить естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, и способностью привлечь для их решения
    соответствующий физико-математический аппарат (ПК-3);

  • способность использовать методы анализа и моделирования линейных и нелинейных электрических цепей постоянного и переменного тока (ПК-11);

  • готовность обосновывать принятие конкретного технического решения при создании электроэнергетического и электротехнического оборудования (ПК-14);

  • готовность к составлению заявок на оборудование и запасные части и подготовке технической документации на ремонт (ПК-50).

В результате изучения дисциплины обучающиеся должны:

знать электрические аппараты, как средства управления режимами работы, защиты и регулирования параметров электротехнических и электроэнергетических систем; физические явления в электрических аппаратах и основы теории электрических аппаратов;

понимать существо задач анализа и синтеза узлов типовых ЭЭА, ограничения применимости методов анализа ЭЭА, правильно использовать допущения при анализе процессов в ЭЭА

уметь применять, эксплуатировать и производить выбор электрических аппаратов, применять методы моделирования, позволяющие прогнозировать свойства и характеристики ЭЭА при расчетах основных узлов ЭЭА, использовать методы анализа и моделирования линейных и нелинейных электрических цепей постоянного и переменного тока, анализа электромагнитных и тепловых процессов в различных ЭЭА, свободно ориентироваться в принципах действия и особенностях конструкции основных видов ЭЭА;

владеть методами расчета переходных и установившихся процессов в линейных и нелинейных электрических цепях; навыками исследовательской работы; методами анализа режимов работы ЭЭА и при использовании специализированной литературы решать задачи проектирования основных узлов ЭЭА.

3.Содержание дисциплины. Основные разделы

Общие понятия об электрических и электронных аппаратах Классификация по назначению, по току и напряжению, по области применения. Применение в схемах электроснабжения, электроприводе и электрическом транспорте.

Электромеханические аппараты низкого напряжения. Электрические контакты. Понятие коммутации электрических цепей. Электрическая дуга постоянного и переменного тока. Источники теплоты, нагрев и охлаждение аппаратов. Электродинамические, индукционные и электромагнитные явления в электрических аппаратах. Электрические аппараты распределительных устройств низкого напряжения, управления и автоматики. Электрические аппараты высокого напряжения. Выбор, применение и эксплуатация электромеханических аппаратов.

Электронные аппараты. Бесконтактная коммутация. Полупроводниковые элементы (диоды, транзисторы, тиристоры и др.) и их основные характеристики в ключевых режимах работы. Пассивные компоненты электронных устройств, особенности их работы в импульсных режимах. Охлаждение силовых элементов электронных аппаратов.

Основные элементы и функциональные узлы систем управления электронных аппаратов. Микропроцессоры в системах управления (функции и структурные схемы).

Прерыватели и регуляторы постоянного тока. Гибридные аппараты постоянного тока. Прерыватели и регуляторы переменного тока. Гибридные аппараты постоянного тока.

Области применения, выбор и эксплуатация электронных аппаратов в системах электроснабжения и в электроприводе. Типовые конструкции. Выбор электронных аппаратов при проектировании. Перспективы развития электронных аппаратов.
Аннотация программы дисциплины

"Электрический привод" 1. Цель и задами дисциплины

Основной целью дисциплины является формирование у студентов необходимых знаний и умений по современному электрическому приводу, что позволит им успешно решать теоретические и практические задачи в их профессиональной деятельности. Для достижения поставленной цели необходимо решить следующие задачи:

  1. Создать у студентов правильное представление о сущности происходящих в электрических приводах процессов преобразования энергии и о влиянии требований рабочих машин и технологий на выбор типа и структуры электропривода.

  2. Научить студентов самостоятельно выполнять простейшие расчеты по анализу движения электроприводов, определению их основных параметров и характеристик, оценке энергетических показателей работы и выборе двигателя и проверке его по нагреву.

3. Научить студентов самостоятельно проводить элементарные лабораторные исследования электрических приводов.

2.Требования к уровню освоения содержания дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

  • готовность участвовать в работе над проектами электроэнергетических и электротехнических систем и отдельных их компонентов (ПК-8);

  • способность использовать современные информационные технологии (ПК-19);

  • способность анализировать технологический процесс как объект управления (ПК-28);

  • готовность участвовать в исследовании объектов и систем электроэнергетики и электротехники (ПК-38);

  • способность применять методы испытаний электрооборудования и объектов электроэнергетики и электротехники (ПК-43);

  • готовность к наладке и опытной проверке электроэнергетического и электротехнического оборудования (ПК-47).

Обучающиеся должны освоить дисциплину на уровне, позволяющем им ориентироваться в схемных решениях, математических моделях, свойствах и характеристиках электроприводов постоянного и переменного тока. Уровень освоения дисциплины должен позволять студентам проводить типовые расчеты основных параметров и характеристик электрических приводов, проводить испытания и эксплуатацию электроприводов.

В результате изучения дисциплины обучающиеся должны:

  • получить общее представление о назначении и видах современных электрических
    приводов, знать простейшее математическое описание их элементов, схемы включения,
    основные параметры, характеристики и свойства;

  • уметь использовать приближенные методы расчета и выбора основных элементов
    электрических приводов;

  • приобрести первоначальные навыки проведения лабораторных испытаний
    электрических приводов;

- быть в состоянии использовать полученные знания, умения и навыки в своей профессиональной деятельности при решении практических задач при использовании электрических приводов.

3.Содержание дисциплины. Основные разделы

Назначение электрического привода, его схема и примеры реализации. Механика электропривода, уравнения механического движения. Расчетные схемы механической части электропривода. Установившееся и неустановившееся механическое движение электропривода. Анализ устойчивости движения. Понятие и способы регулирования переменных (координат) электропривода.

Схемы, статические характеристики, энергетические режимы и способы регулирования электроприводов с двигателями постоянного и переменного тока. Расчет регулировочных резисторов. Особенности переходных режимов электроприводов с двигателями постоянного и переменного тока. Разомкнутые и замкнутые схемы управления электроприводов. Энергетические показатели работы электроприводов и основные способы их повышения. Элементы проектирования электроприводов, выбор основных элементов электроприводов. Методы проверки электродвигателей по нагреву.
Аннотация программы учебной дисциплины

Установки индукционного нагрева

Общая трудоемкость изучения дисциплины составляет 3 зачетных единиц (108 час).

Цели и задачи дисциплины

Целью изучения дисциплины является формирование у будущих бакалавров знаний, умений и навыков по работе с электротехническим оборудованием при дальней профессиональной деятельности в области применения индукционных электротехнологий электротермического назначения.

Задачей изучения дисциплины является:

1. Приобретение студентом знаний, умений и навыков, необходимых для дальнейшего профессионального обучения по своему направлению.

2. Появление у студентов понимания того, в какой мере полученные знания, умения и навыки будут применяться при дальней профессиональной деятельности в области применения электротехнологий.

3. Получение знаний об основах электротермического оборудования, методам анализа и расчета, выбора, ремонта, эффективной и безопасной эксплуатации индукционного технологического оборудования;

4. Приобретений знаний и навыков по использованию источников информации, имеющейся нормативно-технической и справочной документацией по электротехнологическому оборудованию при дальней профессиональной деятельности.

Основные разделы:

Основы техники индукционного нагрева, основы индукционных технологий, область применения и классификация, физические основы индукционного метода нагрева, основы теории индукционного нагрева, индукционные нагревательные установки, индукционные плавильные установки, техника диэлектрического нагрева, источники питания и автоматизированные системы управления технологическими процессами, основы расчетов индукционного оборудования. расчет индукционной техники и процессов в ней. численные методы расчета индукционного термического оборудования, методы и средства оптимизации индукционных технологий, основы проектирования индукционного электротермического оборудования.

1   2   3   4   5   6

Похожие:

Аннотация рабочей программы дисциплины Философия Общая трудоемкость изучения дисциплины составляет 4 зачетные единицы (144 ч.) iconАннотация рабочей программы дисциплины «История» Общая трудоемкость...
России; ввести в круг исторических проблем, связанных с областью будущей профессиональной деятельности, обучить приёмам поиска и...
Аннотация рабочей программы дисциплины Философия Общая трудоемкость изучения дисциплины составляет 4 зачетные единицы (144 ч.) iconАннотация рабочей программы дисциплины «История» по бакалавриату...
России; ввести в круг исторических проблем, связанных с областью будущей профессиональной деятельности, обучить приёмам поиска и...
Аннотация рабочей программы дисциплины Философия Общая трудоемкость изучения дисциплины составляет 4 зачетные единицы (144 ч.) iconАннотированное содержание программы дисциплины «Челюстно-лицевое...
Общая трудоемкость изучения дисциплины составляет 3 зачетные единицы, 108 академических часов
Аннотация рабочей программы дисциплины Философия Общая трудоемкость изучения дисциплины составляет 4 зачетные единицы (144 ч.) iconАксиология
Общая трудоемкость изучения дисциплины составляет 3 зачетные единицы (108 часов)
Аннотация рабочей программы дисциплины Философия Общая трудоемкость изучения дисциплины составляет 4 зачетные единицы (144 ч.) iconАннотированное содержание программы дисциплины «Протезирование при...
Общая трудоемкость изучения дисциплины составляет 2 зачетные единицы, 72 академических часов
Аннотация рабочей программы дисциплины Философия Общая трудоемкость изучения дисциплины составляет 4 зачетные единицы (144 ч.) iconОбщая трудоемкость изучения дисциплины составляет 3 зачетные единицы (108 час)
Задачей изучения дисциплины является формирования способности понимать движущие силы и закономерности исторического процесса
Аннотация рабочей программы дисциплины Философия Общая трудоемкость изучения дисциплины составляет 4 зачетные единицы (144 ч.) iconАннотации рабочих программ учебных дисциплин
Общая трудоемкость изучения дисциплины составляет 3 зачетные единицы (108 часов)
Аннотация рабочей программы дисциплины Философия Общая трудоемкость изучения дисциплины составляет 4 зачетные единицы (144 ч.) iconАннотированное содержание программы дисциплины «Общая экология» по...
Общая трудоемкость дисциплины составляет 3 зачетные единицы, 108 часов. Курс 2, семестр 4
Аннотация рабочей программы дисциплины Философия Общая трудоемкость изучения дисциплины составляет 4 зачетные единицы (144 ч.) iconАннотированное содержание программы учебной практики «Уход за больными...
Общая трудоемкость изучение дисциплины составляет 3 зачетные единицы, 108 часов, 3 семестр
Аннотация рабочей программы дисциплины Философия Общая трудоемкость изучения дисциплины составляет 4 зачетные единицы (144 ч.) iconЗадачами изучения дисциплины являются
Общая трудоемкость изучения дисциплины составляет 3 зачетных единицы (108 часов)
Аннотация рабочей программы дисциплины Философия Общая трудоемкость изучения дисциплины составляет 4 зачетные единицы (144 ч.) iconЗадачами изучения дисциплины являются
Общая трудоемкость изучения дисциплины составляет 3 зачетных единицы (108 часов)
Аннотация рабочей программы дисциплины Философия Общая трудоемкость изучения дисциплины составляет 4 зачетные единицы (144 ч.) iconАннотация рабочей программы дисциплины акушерства и гинекологии для...
Общая трудоемкость дисциплины составляет 6 зачетных единиц, 216 академических часов
Аннотация рабочей программы дисциплины Философия Общая трудоемкость изучения дисциплины составляет 4 зачетные единицы (144 ч.) iconАннотации программ дисциплин Аннотация дисциплины «Общая химическая...
Рецензент программы: д э н., проф. Орешкин В. А., профессор кафедры Международной торговли и внешней торговли РФ
Аннотация рабочей программы дисциплины Философия Общая трудоемкость изучения дисциплины составляет 4 зачетные единицы (144 ч.) iconДискретная математика
Общая трудоемкость дисциплины составляет 4 зачетных единицы, 144 часа, в том числе 72 аудиторных часа
Аннотация рабочей программы дисциплины Философия Общая трудоемкость изучения дисциплины составляет 4 зачетные единицы (144 ч.) iconТематический план изучения дисциплины «экология»
Семестр Форма промежуточной аттестации – зачет. Общая трудоемкость дисциплины составляет 2 зачетных единицы, 72 часа
Аннотация рабочей программы дисциплины Философия Общая трудоемкость изучения дисциплины составляет 4 зачетные единицы (144 ч.) iconАннотации программ дисциплин
Общая трудоемкость изучения дисциплины составляет 3 зачетных единицы (108 часов)


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск