Экспериментальное исследование теплопроводности, удельного электрического сопротивления и излучательной способности графита в области температур





Скачать 346.02 Kb.
НазваниеЭкспериментальное исследование теплопроводности, удельного электрического сопротивления и излучательной способности графита в области температур
страница2/3
Дата публикации06.01.2015
Размер346.02 Kb.
ТипАвтореферат
100-bal.ru > Физика > Автореферат
1   2   3

Структура и объем работы. Диссертационная работа состоит из введения, пяти глав, выводов и списка литературы. Объем работы составляет 144 страницы, включая 65 рисунков, 15 таблиц. Список цитируемой литературы содержит 70 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы и практическая значимость диссертации. Сформулированы цель и основные задачи, выбраны объект и предмет исследований, перечислены положения, выносимые на защиту.

Первая глава диссертации посвящена обзору методов исследования и анализу экспериментальных данных изучаемого комплекса свойств графита, измеренных в стационарном и нестационарном тепловых режимах при температурах выше 2300 К. Рассмотрение экспериментальных методов показало, что применялся один образец цилиндрической формы. Действительная температура внутренней поверхности полого цилиндра или на оси цилиндрического стержня измерялась с помощью модели АЧТ достаточно точно. Действительная температура наружной поверхности определялась косвенно, с привлечением литературных данных по излучательной способности материала. Поэтому для изучаемого комплекса теплофизических свойств точность определения температуры отнесения непосредственно зависит от точности нахождения действительной температуры наружной поверхности.

Основное внимание уделено анализу метода радиального теплового потока и экспериментальным данным теплопроводности, измеренным в стационарном тепловом режиме. Анализ рассмотренных работ позволил выделить следующие недостатки определения теплопроводности графитов:

- принципиальным моментом является то, что действительная температура наружной поверхности определялась косвенно. Использование одного образца при существовании двух неизвестных величин: теплопроводности и действительной температуры наружной поверхности, приводило к методической погрешности при определении теплопроводности и температуры отнесения;

- характерные размеры экспериментального образца (толщина стенки, на которой измерялся градиент температуры 4,5-19 мм) определили перепад температуры в сотни градусов. Это оказывало влияние на корректность нахождения температуры отнесения, выполнение исходного предположения о независимости свойств от температуры, что в конечном итоге формировало низкую температурную чувствительность метода определения теплопроводности;

- используется нагрев прямым пропусканием электрического тока. В ряде работ отмечается необходимость учитывать влияние температурной зависимости удельного электрического сопротивления на распределение мощности внутренних источников теплоты по толщине стенки, что не проводилось. Отсутствовало обоснование выбора расстояния между зондами, что могло повлиять на выполнение изотермического условия и одномерного по радиусу поля температуры.

- переотражение между исследуемым образцом и охранным нагревателем или внутренней поверхностью рабочей камеры не учитывали, что оказывало влияние на потерю точности температурных измерений.

Анализ стационарных методов изучения радиационных характеристик показал, что точность определения непосредственно связана с корректностью определения действительной температуры наружной поверхности образца. Большой разброс экспериментальных данных интегральной полусферической и спектральной нормальной излучательной способности графитов различных марок предопределил использование соответствующих осредненных значений.

Обзор методов исследований изучаемого комплекса теплофизических свойств позволил сделать вывод о целесообразности использовании метода двух полых цилиндров с различной толщиной стенки, так как данный метод позволяет измерять непосредственно теплопроводность и действительную температуру наружной поверхности. Более точное определение градиента температуры по толщине стенки понизит методическую погрешность определения теплопроводности и ее температуры отнесения. Данный метод позволяет измерять излучательные характеристики и удельное электрическое сопротивление материала при более точном нахождении температуры отнесения. Обзор методов исследования сформировал позицию о необходимости использования тонкостенных образцов с целью уменьшить перепад температуры по толщине стенки, что позволит более точно выполнять предположение о постоянных свойствах материала и таким образом повысить точность определения изучаемого комплекса свойств. Ориентация на применение тонкостенных образцов для сохранения их целостности при высоких температурах требует разработки соответствующих конструктивных решений.

Во второй главе представлена методика, которая включает в себя определение комплекса свойств: теплопроводность, удельное электрическое сопротивление и излучательная способность. Приводится описание установки и аппаратуры, созданной для реализации методики.

Метод радиального теплового потока, в котором используются два полых тонкостенных цилиндра с различной толщиной стенки, является одним из перспективных методов изучения теплофизических свойств материалов при высоких температурах.

Экспериментальная реализация метода предполагает, что подводимая теплота снимается с внешней поверхности излучением. Методика может быть реализована разными способами. В первом способе для определения теплового потока с внешней поверхности qs используется формула закона Стефана-Больцмана: и литературные данные для интегральной полусферической излучательной способности исследуемого вещества . Измерения действительной температуры внутренней поверхности каждого цилиндра позволяют численно определить действительную температуру на внешней поверхности цилиндров TR. Значение плотности теплового потока и величина перепада температуры по толщине стенки дают возможность рассчитать теплопроводность материала. Данный способ имеет недостаток, так как значения интегральной полусферической излучательной способности исследуемого материала могут отсутствовать или определены в других условиях, что влечет снижение точности определения теплопроводности. Во втором способе предлагается использовать дополнительно к температурным измерениям потенциальные зонды. На основе измерений силы тока и падения напряжения на участке между зондами рассчитывается плотность теплового потока. Как следствие, точность измерения теплопроводности должна возрастать по сравнению с первым способом. Рассматриваемая модификация метода ранее не была реализована экспериментально для графита. При этом теплопроводность и интегральная полусферическая излучательная способность материала определяются одновременно.

Метод основан на решении стационарного одномерного уравнения теплопроводности с внутренними источниками теплоты, записанного для случая постоянных свойств материала. Дифференциальное уравнение теплопроводности, записанное в цилиндрической системе координат, в одномерном приближении и в предположении, что свойства материала и объемная мощность внутренних

источников теплоты qv являются постоянными, имеет вид: ,

где , k-теплопроводность, Т-температура, r-текущий радиус. Аналитическое решение данного уравнения имеет вид: , где r - радиус внутренней поверхности образца. В данном уравнении имеются две неизвестных величины: TR – действительная температура наружной поверхности и k – теплопроводность, так как Tr и qs определяются экспериментально. Aгеометрический коэффициент: .

Распределение температурного поля по радиусу имеет сложную зависимость – присутствуют логарифмическое и параболическое слагаемые. Использование двух полых цилиндра с одинаковым наружным радиусом, но разной толщиной стенки позволяет решить систему двух уравнений и определить две искомые величины: TR и k. Предполагается, что температура наружной поверхности и плотность теплового потока, снимаемая с внешней поверхности, для двух образцов равны. Обработка экспериментальных данных сводится к построению кривых qs=f(Tri) для двух образцов. При одинаковом значении плотности теплового потока q1=q2=qs определяются действительные температуры внутренней поверхности Tr1 и Tr2, и рассчитываются теплопроводность и действительная температура наружной поверхности ТR.

Удельное электрическое сопротивление экспериментально определяется с учетом термического расширения образца. Для определения интегральной полусферической излучательной способности ht используется калориметрический метод. В методе двух цилиндров предполагается, что вся подведенная электрическая мощность выделяется с внешней поверхности цилиндра в виде радиационного потока теплоты qs. Определив действительную температуру внешней поверхности, из условия выполнения теплового баланса для случая (площадь поверхности рабочей камеры значительно больше площади поверхности образца), можно определить интегральную полусферическую излучательную способность ht материала по формуле: , где I-сила тока через экспериментальный образец, U-падение напряжения на участке между зондами, L-расстояние между зондами. Спектральная нормальная излучательная способность может быть найдена на основании закона Вина при измерении яркостной температуры внешней поверхности Тярк и рассчитанной по методу двух цилиндров действительной температуры TR: .

Для реализации данного метода при высоких температурах была создана экспериментальная установка. Ее основными элементами являются: рабочая камера с экспериментальным образцом, системы электрического нагрева постоянным током, газо-вакуумная и температурных измерений. Источник постоянного тока мощностью 15 кВт и система температурной диагностики, включающая два монохроматических пирометра, были специально созданы для решения поставленной задачи. В качестве рабочей камеры созданной установки была использована конструкция газо-вакуумной водоохлаждаемой камеры модели АЧТ, разработанная в ОКБ ИВТАН. Основными конструктивными элементами камеры (рис.1) являются медные водоохлаждаемые пружинные токоподводы, которые обеспечивают надежный электрический контакт и сводят к минимуму термические нагрузки, возникающие в образце. Заново разработана конструкция выходного окна, которое было дополнено системой обдува буферным газом, что минимизировало его загрязнение. Стекло смотрового окна было установлено под небольшим углом ~2-3о от условного перпендикуляра к оси экспериментального образца. Это позволяло исключать влияние взаимного отражения светового потока между образцом и окном камеры на результаты измерения температуры. Конструкция фланца бокового смотрового окна, через которое осуществлялись температурные измерения, была дополнена системой водяного охлаждения. Кроме того, внутренняя поверхность камеры и токоподводы были покрыты аквадагом с целью создания диффузного характера отражения и уменьшения переотражения светового потока от элементов внутренней поверхности камеры на экспериментальный образец.




Рис.1. Конструкция рабочей камеры. Фотография образца и схема соединения образца и конусной втулки:

1 - корпус рабочей камеры, 2 - водоохлаждаемый токоподвод, 3 - покрытие (аквадаг), 4 - экспериментальный образец, 5 - водоохлаждаемый корпус смотрового окна, 6- кварцевое стекло, 7 - прижимная втулка, 8 - конусная втулка, 9 - цанговая частично разрезная конусная втулка
Экспериментальный образец фиксировали двумя конусными втулками, каждая из которых была установлена в водоохлаждаемых токоподводах. Образец был закреплен в конусных втулках при помощи цанговых частично разрезных зажимов и прижимных втулок, изготовленных также из графита. Такое соединение обеспечивало хороший электрический контакт соприкасающихся поверхностей и допускало перемещение исследуемого образца по длине и диаметру при его термическом расширении в процессе нагрева. В сочетании с пружинными токоподводами данная конструкция позволила проводить эксперименты с образцами, толщина стенки которых составляла ~1 мм и при этом достигать температуру ~3500 К, сохраняя целостность образцов. Образцы представляли собой полые цилиндрические трубки длиной 80 мм и внешним диаметром 8,1 мм. Отношение внутреннего диаметра камеры к внешнему диаметру экспериментального образца составляло 120 мм / 8,1 мм >10. Трубки отличались внутренним диаметром и имели размеры 4,9 мм, 5,5 мм и 5,9 мм. Для измерения истинной температуры внутренней поверхности на центральной образующей высверливалось отверстие диаметром 1 мм. Данное отверстие и внутренняя полость экспериментального участка имитировали модель АЧТ, степень совершенства которой рассчитана по методике Б.А. Хрусталева. Ось отверстия для определения температуры была совмещена с осью смотрового окна. Потенциальные зонды крепились на нижней образующей и отстояли на равном расстоянии от отверстия для измерения температуры.

Нагрев образца осуществляли постоянным электрическим током, который формировался из переменного тока сети напряжением 220 В. Для получения постоянного тока была использована схема выпрямления, которая состояла из диодного моста, собранного из диодов марки В200, фильтра с суммарной электроемкостью 1,4 Ф и силового трансформатора ОСУ-40. Падение напряжения на токоподводах регулировали с помощью блока ВРТ-2 и усилителя марки У-252. Величину постоянного тока измеряли бесконтактным способом, используя токовые клещи марки Aktakom ATA-2502. Падение напряжения на участке между зондами L измеряли мультиметром марки В7-38.

Система температурной диагностики состояла из двух автоматических быстродействующих микропирометров, 12-разрядного 4-канального АЦП L-Card марки L-780 с быстродействием 30 мкс и персонального компьютера. Работа была ориентирована на исследования в области высоких температур и на использование оптического метода измерения температуры. Изготовление двух специализированных пирометров было продиктовано необходимостью применения независимых малогабаритных приборов для измерения температуры с поверхности диаметром 0,3 мм и 0,9 мм.

Был проведен цикл предварительных экспериментов. Основные задачи данного цикла включали: измерение поправки на ослабление интенсивности сигнала температуры в стекле выходного окна; выбор расстояния между зондами; определение поправки на линейное термическое расширение расстояния между зондами; оценка воспроизводимости температурных и электрических измерений; определение поправки на отражение от стенок камеры при определении спектральной нормальной излучательной способности.

Реализация метода двух полых цилиндров включает в себя два самостоятельных эксперимента на образцах с различной толщиной стенки. Для каждого эксперимента предварительно вакуумировали рабочую камеру, затем заполняли ее буферным газом (аргон высокой чистоты) до давления Р=0,15 МРа. Перед экспериментом проводили предварительный отжиг образца при температуре 2300 К длительностью не менее 10 минут.

Специальная серия экспериментов на изотропном графите с известными свойствами МПГ-6 была проведена с целью тестирования данного метода и возможностей установки. При этом метод двух цилиндров использовался без потенциальных зондов. Поэтому плотность теплового потока рассчитывалась: , и использовались справочные данные по излучательной способности графита МПГ-6. Результаты сравнения теплопроводности и спектральной (λ=0,65 мкм) нормальной излучательной способности показали хорошее соответствие с литературными данными для графита МПГ-6. Кроме того, погрешность определения указанных величин с ростом температуры уменьшалась, что позволило считать выбранный метод и возможности созданной установки приемлемыми для дальнейших исследований именно при высоких температурах.

В том же варианте метода была проведена серия экспериментов на графите марки МПГ-7 и получены значения теплопроводности и излучательной способности в температурном диапазоне 2500-3100 К. Верхнее значение температуры было ограничено рекомендуемыми данными по для графита. Данные для графита МПГ-7 при температуре выше 2000 К были получены впервые. Значения теплопроводности оказалась несколько выше литературных данных для графитов МПГ-6 и МПГ-8, что может быть следствием отличия свойств разных марок. Сравнение результатов спектральной нормальной излучательной способности графитов МПГ-6 и МПГ-7 с обобщенной рекомендованной зависимостью показало хорошее соответствие.

Основной эксперимент, посвященный изучению комплекса свойств графита DE-24, осуществляли в режиме пошагового подъема подводимой к образцу электрической мощности и выдержкой во времени до момента наступления стационарного режима. Излучательные характеристики данной марки графита неизвестны, что поставило задачу применения потенциальных зондов. Перед каждым измерением температуры проводилась продувка аргоном с целью очистки поверхности стекла и оптического тракта от возможных продуктов испарения графита. Выполнение условия Т/ t=0, определяли на основании измеряемых во времени (t) двух локальных значений: действительной температуры внутренней поверхности образца и яркостной температуры внешней поверхности. Для каждого стационарного режима фиксировали ток и падение напряжения, и измеряли две указанные температуры. Последовательное применение метода при различных тепловых нагрузках позволяет построить зависимость теплопроводности, удельного электрического сопротивления и излучательной способности от температуры.

Изотопные графиты марки МПГ-7 и DE-24 ранее не исследовались, поэтому полученные экспериментальные результаты, являются новыми на интервале температур 2300-3100 К. На рис.2 приведены результаты определения теплопроводности методом двух полых цилиндров в приближении постоянных свойств для изотропных графитов марки МПГ-6, МПГ-7 и DE-24 и дано сравнение с литературными данными для изотропных графитов близкой плотности. Численные значения теплопроводности отдельных работ существенно отличаются друг от друга. Среди факторов, определяющих разброс численных значений теплопроводности, можно отметить, что действительная температура внешней поверхности определялась косвенно, и применялись толстостенные образцы. Использование в настоящей работе метода, который позволяет определять действительную температуру наружной поверхности непосредственно (по двум температурам, которые фиксировали в модели АЧТ) и применение образцов с толщиной стенки ~1 мм, позволяет повысить точность определения значений теплопроводности и температуры отнесения. Погрешность определения теплопроводности уменьшается с ростом температуры. Кроме того, реализованный подход позволил выявить более сильную температурную зависимость теплопроводности по сравнению с результатами работ других авторов.



1   2   3

Похожие:

Экспериментальное исследование теплопроводности, удельного электрического сопротивления и излучательной способности графита в области температур iconЭкспериментальное исследование тонкодисперсного распыла перегретой воды
Работа выполнена в Федеральном государственном бюджетном учреждении науки Объединенном институте высоких температур Российской академии...
Экспериментальное исследование теплопроводности, удельного электрического сопротивления и излучательной способности графита в области температур iconЭкспериментальное исследование генерации и устойчивости тепловых концентрированных вихрей
Работа выполнена в Федеральном государственном бюджетном учреждении науки Объединенном институте высоких температур Российской академии...
Экспериментальное исследование теплопроводности, удельного электрического сопротивления и излучательной способности графита в области температур iconЭлектрическое сопротивление. Резисторы Цель урока
Познакомить учащихся с электрическим сопротивлением проводников как физической величиной. Дать объяснение природе электрического...
Экспериментальное исследование теплопроводности, удельного электрического сопротивления и излучательной способности графита в области температур iconПрограмма по формированию навыков безопасного поведения на дорогах...
Образовательная: познакомить учащихся с электрическим сопротивлением проводников как физической величиной. Дать объяснение природе...
Экспериментальное исследование теплопроводности, удельного электрического сопротивления и излучательной способности графита в области температур iconТема урока: «Электрическое сопротивление. Удельное сопротивление»
Цель урока: Познакомить учащихся с электрическим сопротивлением как физической величиной. Дать объяснение природе электрического...
Экспериментальное исследование теплопроводности, удельного электрического сопротивления и излучательной способности графита в области температур iconРешение задач на определение средней суточной (годовой) температуры и амплитуды температур
Определить среднюю годовую температуру и амплитуду температур в Калининградской области
Экспериментальное исследование теплопроводности, удельного электрического сопротивления и излучательной способности графита в области температур iconАссимиляция англоязычных заимствований с гендерным компонентом в...
При этом заболевании параллельно протекают воспалительные экссудативные, пролиферативные и дистрофически-дегенеративные процессы...
Экспериментальное исследование теплопроводности, удельного электрического сопротивления и излучательной способности графита в области температур iconРазработка полимерного низкочастотного виброизолятора с квазинулевой жесткостью
Проведено аналитическое исследование разрабатываемого виброизолятора, его изготовление и экспериментальное исследование. Частота...
Экспериментальное исследование теплопроводности, удельного электрического сопротивления и излучательной способности графита в области температур iconСодержание
Тюленёва А. Н., Осипенко М. А., Няшин Ю. И. экспериментальное и теоретическое исследование процесса иммобилизации микроорганизмов...
Экспериментальное исследование теплопроводности, удельного электрического сопротивления и излучательной способности графита в области температур iconСинергетическая модель концепта «жизнь»: экспериментальное исследование
Работа выполнена на кафедре английского языка Тверского государственного университета
Экспериментальное исследование теплопроводности, удельного электрического сопротивления и излучательной способности графита в области температур iconИсследовательская работа Автор работы
Экспериментальное исследование, направленное на определение оптимального конструктора веб-сайта в школьных условиях
Экспериментальное исследование теплопроводности, удельного электрического сопротивления и излучательной способности графита в области температур icon«фотодинамическая терапия в лечении перитонита» (Экспериментальное исследование)
«Государственный научный центр лазерной медицины Федерального медико-биологического агентства России»
Экспериментальное исследование теплопроводности, удельного электрического сопротивления и излучательной способности графита в области температур iconИсследование анизотропии и вариаций космических лучей 10 11 10 20...
Нейтринные эксперименты ияи ран во фнал: эксперименты E938 (minervA) и E929 (NOvA)
Экспериментальное исследование теплопроводности, удельного электрического сопротивления и излучательной способности графита в области температур iconУрок по физике в 8 классе по теме «Электрическое сопротивление проводников....
Цель: создать условия для формирования у обучающихся представления об электрическом сопротивлении, его зависимости от разных величин...
Экспериментальное исследование теплопроводности, удельного электрического сопротивления и излучательной способности графита в области температур iconМетодические указания для работы с программой «Открытая Физика 1» Цель работы
Экспериментальное исследование интерференции световых волн от двух источников (щелей)
Экспериментальное исследование теплопроводности, удельного электрического сопротивления и излучательной способности графита в области температур iconУчебно-тематические планы лекционных занятий по дисциплине «Математика»...
Экспериментальное исследование интерференции световых волн от двух источников (щелей)


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск