Учебно-методический комплекс представляет собой комплект учебно-методических и контролирующих материалов по дисциплине «Водоочистка»





НазваниеУчебно-методический комплекс представляет собой комплект учебно-методических и контролирующих материалов по дисциплине «Водоочистка»
страница6/17
Дата публикации03.05.2015
Размер2.49 Mb.
ТипУчебно-методический комплекс
100-bal.ru > География > Учебно-методический комплекс
1   2   3   4   5   6   7   8   9   ...   17
ТЕМА 1

Фторирование и дефторирование воды
Гигиенические нормативы содержания фтора в питьевой воде

Фторкак весьма активный в биологическом отношении микроэлемент сначала 30-х годов нынешнего столетия привлек особое внимание гигиенистов, стоматологов, токсикологов, химиков, геохимиков и других специалистов. Интерес к фтору начал проявляться с 1931 г, когда было доказано, что причиной эпидемий «пятнистой эмали» зубов является повышенное содержание фтора в питьевой воде. Это открытие стимулировало изучение эндемического флюороза во всем мире. Выяснилось, что противокариесное действие оптимальных концентраций фтора распространяется как на молочные, так и на постоянные зубы, а также на все возрастные группы населения. Эти сведения позволили утверждать о целесообразности искусственного обогащения питьевой воды фтором. Фторирование воды началось осуществляться с 1945 г., применявшиеся другие методы профилактики кариеса зубов не имели успеха, и заболеваемость населения кариесом непрерывно росла. С 1957 г. впервые в истории развития водоснабжения в нашей стране началось фторирование воды в г. Норильске, рассматриваемое как мера профилактики заболеваний кариесом зубов.

Оптимальной концентрацией фтора в питьевой воде является 0,7...1,2 мг/л. Более низкие концентрации фтора принимают при фторировании в южных районах и в летний период, когда количество воды, поступающейв организм человека, увеличивается. Более высокие концентрации фтора принимают при фторировании воды в северных районах и в зимний период, т. е. при более низкой температуре окружающей среды. Необходимость фторирования определяется содержанием фтора в воде источников в количестве менее 0,5 мг/л. Согласно СанПиН 2.1.1.1074-01 концентрация в воде фторид-ионов не должна превышать 1,5 мг/л.

Концентрация фторид-ионов в природных водах нашей планеты варьирует в широких пределах – от 0,01 до 50 – 100 мг/л (Кения), в природных водах России от 0,01 до 8 мг/л. Низкие концентрации фторид-ионов встречаются в большинстве поверхностных источников водоснабжения. И лишь в открытых водоемах Южного Урала, Западной Сибири концентрация фторид-ионов достигает 11 мг/л.

Подземные воды (артезианские, колодезные) богаче фторид-ионами, чем поверхностные, и среди них чаще встречаются источники с концентрацией фторид-ионов, превышающей пре дельно допустимую (1,5 мг/л). Среди этих источников 68-89% в России содержат менее 0,5 мг/л фторид-ионов.

Свыше 85% воды в города России подается из рек, причем содержание фторид-ионов в воде этих источников, превышающее 0,4 мг/л, встречается в редких случаях, да и это количество после обработки воды на очистных сооружениях снижается до предельно низкой величины.
Технология фторирования воды

Для фторирования питьевой воды может быть использован ряд фторсодержащих соединений, таких как кремнефтористый натрийNa2SiF6, кремнефтористая кислотаH2SiF6, фтористый натрийNaF, кремнефтористый аммоний(NH4)2SiF6, фтористый кальцийCaF2, фтористоводородная кислотаHF, кремнефтористый калийK2SiF6, кремнефтористый алюминий А12(SiF6)3фтористый алюминийA1F3 и ряд других.

В США и Канаде применяют для фторирования питьевойводы на 60% действующих установок кремнефтористый натрий, на 25 % - кремнефтористоводородную кислоту, на 13 % - фтористый натрий и только на 2 % установок применяют кремнефтористый аммоний, фтористый кальций, фтористоводородную кислоту и другие соединения. В отечественной практике наиболее широкое применение получил кремнефтористый натрий, менее широкое фтористый натрий и фторид-бифторид аммония.

Кремнефтористый натрий – представляет собой мелкий, сыпучий, негигроскопический кристаллический порошок белого цвета (допускается серый или желтый оттенок), без запаха, удобен в эксплуатации. При длительном хранении на складе в закрытых бочках не слеживается. В воде растворяется плохо.

Фтористый натрий - представляет собой порошок белого или светло-серого цвета без запаха.

Кремнефтористоводородная кислота –выпускается в виде 8...14 %-ного раствора, являясь промежуточным продуктом в производстве фторсодержащих солей. В безводной форме она неизвестна. Это бесцветная, прозрачная, коррозионная жидкость с едким запахом, оказывающая раздражающее действие на кожу. Опыт показал, что применение кремнефтористоводородной кислоты для фторирования воды на установках малой производительности нецелесообразно, так как требуется разбавление кислоты водой, а при этом выпадает осадок, забивающий насосы, арматуру и трубы. Чтобы этого избежать, добавляют к кремнефтористоводородной кислоте небольшое количество фтористоводородной кислоты, что осложняет технологию использования этого метода.

Кремнефтористый аммоний – кристаллическое вещество белого цвета с розоватым или желтоватым оттенком без запаха. Недостатком этого реагента является его слеживаемость. Даже при кратковременном хранении он превращается в довольно плотные комья. Это свойство продукта вызывает необходимость дополнительных мероприятий при использовании его в качестве реагента: он нуждается в сушке и дроблении, что, конечно,создает дополнительные трудности в эксплуатации и увеличивает эксплуатационные расходы.

Фтористый кальций – самый дешевый реагент, но его растворимость в водекрайне низка.Однако, фтористый кальций хорошо растворим в кислых растворах, в том числе в растворах коагулянта, 10%-ный раствор коагулянта может содержать 1% фтор-иона.

Применяемые на практике установки по технологии приготовления растворов фторсодержащих соединений можно классифицировать следующим образом:

  • Во фтораторных установках сатураторного типав качестве реагента принят порошкообразный кремнефтористый натрий, который вводится в воду перед хлорированием. Предварительно реагент замачивают и размешивают в баке, а затем выливают через воронку в сатуратор (один раз в смену). В камере для реагента должно быть 8... 10 кг кремнефтористого натрия. В основу работы фтораторной установки положен принцип объемного вытеснения;

  • Во фтораторных установках с растворными бакамив качестве реагента применяют кремнефтористый натрий. Загрузку в баки реагента осуществляют с помощью бункеров, оборудованных вибраторами и дозаторами барабанного типа. Для лучшего растворения реагента баки оборудованы мешалкой. Концентрация раствора реагента в баках составляет 0,05% по фтору или 0,08% по чистой соли.

  • Во фтораторных установках с затворно-растворными бакамив качестве реагентапринят фтористый натрий с расходом в сутки 20 кг. Установка состоит из системы баков: затворного – объемом 400 л, двух растворных – объемом 1500 л каждый, дозирующего бачка,снабженного поплавковым клапаном. Затворный и растворные баки оборудованы электромешалками. Растворяют фтористый натрий в воде, нагретой до 75...80°С,для чего в затворный бак вмонтирован электронагреватель. Крепкий раствор переливают в расходный бак, предварительно на 1/3 наполненный водой, бак дополняют водой до нужной отметки и раствор тщательно перемешивают. После определения содержания фтора в растворе, его через вентиль подают в дозирующий бак и затем в резервуар чистой воды.

Так как фторирование воды требует высокой точности дозирования реагента (±5 %), для его подачи в жидком виде совершенно непригодны краны и насадки. В основном для дозирования реагентов в жидком виде применяют насосы-дозаторы мембранного и поршневого типа.

Дозу фторсодержащего реагента находят по формуле:

, где

mф – коэффициент, зависящий от места ввода фтора в обрабатываемую воду, принимаемый при вводе фтора после очистных сооружений равным 1,0, при вводе фтора перед контактными осветлителями или фильтрами – 1,1; аф – содержание фтора в обработанной воде, мг/л (оптимальная концентрация фтора в питьевой воде), равное для средней полосы России для зимнего периода – 1, для летнего периода – 0,8; Ф – содержание фтора в исходной воде, мг/л, Кф – содержание фтора в чистом реагенте, %, равное для кремнефтористого натрия – 60,6, для кремнефтористого аммония — 63,9, для фтористого натрия – 45,25, Сф – содержание чистого реагента в продажном техническом продукте, %, равное для кремнефтористого натрия высшего, I и II сортов соответственно 59,4; 57,5 и 56,4, для фтористого натрия — 42,5; 38; 36,2, а для кремнефтористого аммония, выпускаемого промышленностью одним сортом, — 59,4.

Как при мокром дозировании, так и при сухом реагенты для фторирования воды подают в виде раствора. Место введения раствора реагента выбирают в зависимости от способа очистки воды и технико-экономических соображений, при этом должны быть соблюдены условия перемешивания реагента с питьевой водой и его наименьшие потери. При использовании артезианских вод, подаваемых потребителю без очистки, фтористые соединения поступают непосредственно в напорные водоводы. При небольшой нагрузке на фильтры фторсодержащие реагенты вводят перед фильтрами, при большой нагрузке – после фильтров, в трубопровод между фильтрами и резервуаром чистой воды или непосредственно в резервуар чистой воды. В некоторых случаях идут на потери фторидов, если это экономически выгодно.

На большинстве водоочистных комплексов фторирование является последней стадией обработки, не считая хлорирования. Хлорирование воды не удаляет фторидов. Хлор и фтор можно добавлять одновременно. Хлор и его производные оказывают одно неблагоприятное действие – они обесцвечивают реагенты, добавляемые при определении фторидов в воде, что может дать ошибку в определении концентрации фтора.
Технология дефторирования воды

Для дефторирования воды используют ряд методов, которые можно объединить в две группы.

  1. Метод сорбции фтора осадком гидроксида алюминияилимагния, а также фосфата кальцияцелесообразно применять приобработке поверхностных вод, когда кроме обесфториваниятребуются еще осветление и обесцвечивание. Вместе с тем этотметод может найти применение для обработки подземных водпри необходимости их одновременного умягчения (реагентнымметодом) и обесфторивания.

  2. Метод фильтрования воды через фторселективныематериалы основан на обменной адсорбции ионов, при которой фторудаляется в процессе пропуска обрабатываемой воды черезсорбент. Этот метод наиболее эффективен при обесфториванииподземных вод, как правило, не нуждающихся в других видахкондиционирования, или в тех случаях, когда одновременно собесфториванием производят еще и опреснение.

Обесфторивание воды гидроксидом магния,который образуется в магнийсодержащей воде в присутствии извести, позволяет снизить содержание в воде и магния.

Остаточное содержание фтора в воде после ее известкования Фост можно определить по формуле Скотта:

, где

Фисх – содержание фтора в исходной воде, мг/л; (Mg) – количество магния, удаленного из воды при ее известковании, мг/л.

Для снижения содержания фтора в воде на 1 мг требуется 50...60 мг магния или 100...150 мг Mg(OH)2. При недостатке магния в исходной воде для повышения эффекта обесфторивания в нее вводят сульфат или хлорид магния. При избытке магния образующийся в результате взаимодействия гидроксида магния с фтором фторид магния переходит затем в малорастворимый оксифторид магния.

Обесфторивание воды солями алюминияосновано на сорбции фтора осадком гидроксида алюминия. Это связано с образованием на поверхности твердой фазы малорастворимых фторидов. При этом эффективность процесса находится в обратной зависимости от рН воды. По мере снижения рН воды при постоянной дозе сульфата алюминия эффективность обесфторивания возрастает, что объясняется неоднородностью состава осадков при гидролизе сульфата алюминия при различных рН. Поэтому удаление фтора из воды этим способом наиболее целесообразно вести при рН 4,3 ..5,0. При таких значениях расход сульфата алюминия на 1 мг удаленного фтора составит 25.. 30 мг/л. Следовательно, обесфторивание воды гидроксидом алюминия требует ее предварительного подкисления с последующим подщелачиванием для снижения коррозионного действия воды.

Удаление фтора из воды с помощью трикальцийфосфатаосновано на сорбции свежеобразованным трикальцийфосфатом, который связывает имеющийся в воде фтор в малорастворимое соединение – [Ca9(PO4)6Ca]F2, выпадающее в осадок. Этот процесс описывается следующей реакцией:

ЗСа3 (РО4)2 + NaF + Са(НСО3)2 =[Са9(РО4)6 Са] F2 + 2NaHCO3.

Технико-экономическое сравнение трех рассмотренных сорбционных методов обесфторивания воды свидетельствуют о том, что наиболее целесообразно применять для указанной цели гидроксид магния.

Предложен контактно-сорбционный метод обесфториванияприродных вод. Коагулянт вводят в воду непосредственно перед контактными осветлителями. В первоначальный период – 1,5...2,0 ч подается повышенная доза коагулянта 100... 150 мг/л по А12О3. При этом на зернах и в порах загрузки образуется гидроксид алюминия, который впоследствии сорбирует фтор. В этот период – период «зарядки»,фильтрат, содержащий большое количество ионов фтора и алюминия, отводят в специальную емкость для последующего использования в качестве промывных вод. После «зарядки» дозу коагулянта снижают до 20...25 мг/л, что обеспечивает эффективное извлечение фтора за счет сохранения сорбционной способности гидроксида алюминия. Процесс дефторирования воды можно осуществлять и без «зарядки» при постоянной дозе коагулянта, величина которой определяется качеством исходной воды.

Несомненный интерес представляет электрокоагуляционноеобесфториваниеприродных вод, что объясняется возможностью удаления фтора без применения химических реагентов, вместе с которыми в воду вводится значительное количество дополнительных солей, а также высокая активность электролитически полученного гидроксида алюминия. В качестве растворимых анодов применяют алюминий и дюралюминий, для экономии энергозатрат варьируют токовой нагрузкой и расстоянием между электродами, электролиз ведут при постоянном и переменном токе. При электролизе в воду с анода переходят катионы алюминия, которые и адсорбируют фтор. Основным фактором, влияющим на сорбционную способность электролитически полученного гидроксида алюминия, является концентрация ионов водорода. В слабо кислой среде фтор сорбируется получаемым осадком значительно лучше, чем в нейтральной и щелочной. Оптимальное значение рН обрабатываемой воды находится в пределах 6,4...6,6.

Подземные воды, используемые для хозяйственно-питьевого водоснабжения, не нуждаются в осветлении, поэтому для их обесфторивания наиболее целесообразно применять фильтрационные (ионообменные) методы.В качестве сорбентов для извлечения фтора из воды могут быть применены сильноосновные катиониты и аниониты, магнезиальные сорбенты, фосфат кальция, специально обработанные активированные угли, активированный оксид алюминия, модифицированные загрузки, клиноптилолит.

Обесфторивание воды сильноосновными катионитами и анионитамицелесообразно при ее одновременном опреснении. Очевидно, что в современных условиях ионообменный метод обесфторирования воды с применением сильноосновных ионитов не может иметь самостоятельного значения по экономическим соображениям. Он может быть рекомендован только для случая обработки воды в целях одновременного обессоливания и удаления фтора.

Дефторирование воды активированным оксидом алюминияобеспечивает наилучшие результаты по удалению фтора из подземных вод. Зернистый активированный оксид алюминия является наиболее дешевым сорбентом, простым в изготовлении и емким по поглощению фтора. При фильтровании обрабатываемой воды через активированный оксид алюминия происходит поглощение фтора сорбентом. В начале фильтроцикла содержание фтора в фильтрате близко к нулю. С течением времени поглотительная способность уменьшается и при достижении 1,5 мг/л рабочий цикл обесфторивания воды прекращается, так как сорбент нуждается в регенерации. Регенерация сорбента производится пропуском через него раствора едкого натра или сульфата алюминия. В процессе регенерации из сорбента вытесняется поглощенный им фтор. Этот процесс описывается следующей реакцией:

[АН]2S04+ 2F- =2 [АН] F + S042-.

В процессе обесфторивания воды в результате ионного обмена происходит увеличение концентрации в фильтрате сульфатных ионов. Количественно это увеличение эквивалентно уменьшению концентрации суммы ионов фтора и бикарбонатных ионов. Однако, известно, что содержание сульфатов в питьевой воде регламентируется и не должно превышать 500 мг/л. Поэтому увеличение содержания сульфатов при обесфторивании воды необходимо учитывать при проектировании и расчете комплексов по улучшению качества воды.

Обесфторивание воды на алюмомодифицированных материалахпоказывает, что после обработки солями алюминия песка, керамзита, дробленого клиноптилолита и других фильтрующих загрузок они способны эффективно извлекать из фильтруемой воды фтор-ионы. Максимальной сорбционной емкостью по фтору из рассматриваемых материалов обладает алюмомодифицированный клиноптилолит, который в естественной форме фтор из воды практически не извлекает. Механизм сорбции фтора алюмомодифицированным клиноптилолитом может быть представлен следующим образом. При контакте алюмосодержащего реагента с клиноптилолитом (Кл), который является природным катионообменником, в последнем замещаются обменные катионы Са2+, Mg2+, Na+ на катионы алюминия из раствора-модификатора:

3Кл2Ca+2Al3+2Кл3Al+3Ca.

При последующем фильтровании очищаемой воды через алюмомодифицированный материал начинается реобмен катионов алюминия из клиноптилолита. Алюминий взаимодействует с анионами воды (SO42-, OH-, F-). Одновременно с гидролизом и образованием основных солей алюминия протекает процесс дефторирования воды. Извлечение фтора осуществляется за счет ионообмена и образования алюмофторидных комплексов, которые адсорбируются клиноптилолитом:

Al(OH)SO4+2F-Al(OH)F2,

Al3++F-AlF2+.
1   2   3   4   5   6   7   8   9   ...   17

Похожие:

Учебно-методический комплекс представляет собой комплект учебно-методических и контролирующих материалов по дисциплине «Водоочистка» iconУчебно-методических материалов по курсу "Оценка земли" в соответствии...
В соответствии с программой курса в комплект учебно-методических материалов включены
Учебно-методический комплекс представляет собой комплект учебно-методических и контролирующих материалов по дисциплине «Водоочистка» iconУчебно-методических материалов по курсу "Макроэкономика" в соответствии...
В соответствии с программой курса в комплект учебно-методических материалов включены
Учебно-методический комплекс представляет собой комплект учебно-методических и контролирующих материалов по дисциплине «Водоочистка» iconУчебно-методических материалов курса «Инвестиции в эколого-экономические...
Комплект учебно-методических материалов курса «Инвестиции в эколого-экономические проекты»
Учебно-методический комплекс представляет собой комплект учебно-методических и контролирующих материалов по дисциплине «Водоочистка» iconУчебно-методический комплекс по дисциплине «Конституционное право зарубежных стран»
Учебно-методический комплекс дисциплины является частью образовательной программы высшего учебного заведения, разрабатываемый по...
Учебно-методический комплекс представляет собой комплект учебно-методических и контролирующих материалов по дисциплине «Водоочистка» iconУчебно-методических материалов курса «Экологическое страхование и...
Комплект учебно-методических материалов курса «Экологическое страхование и оценка риска»
Учебно-методический комплекс представляет собой комплект учебно-методических и контролирующих материалов по дисциплине «Водоочистка» iconУчебно-методический комплекс Направление подготовки 030900 Юриспруденция квалификация «бакалавр»
Банковское право: комплекс учебно-методических материалов для студентов заочного обучения – Калининград: 2013. 37с
Учебно-методический комплекс представляет собой комплект учебно-методических и контролирующих материалов по дисциплине «Водоочистка» icon3. Учебно-методический комплекс: состав и структура
Мгоу, университет и представляет собой совокупность материалов, регламентирующих содержание учебной и методической работы по организации...
Учебно-методический комплекс представляет собой комплект учебно-методических и контролирующих материалов по дисциплине «Водоочистка» iconУчебно-методический комплекс материалов по дисциплине «Философия»
Учебно-методический комплекс включает учебную программу курса, планы проведения семинарских занятий, список основной и дополнительной...
Учебно-методический комплекс представляет собой комплект учебно-методических и контролирующих материалов по дисциплине «Водоочистка» iconПрограмма по формированию навыков безопасного поведения на дорогах...
«Теория физической культуры» представляет собой совокупность учебно-методических материалов, способствующих эффективному освоению...
Учебно-методический комплекс представляет собой комплект учебно-методических и контролирующих материалов по дисциплине «Водоочистка» iconУчебно-методический комплекс предназначен для студентов I курса факультета...
Учебно-методический комплекс предназначен для студентов I курса факультета естественных наук, направление подготовки 020201 «Биология...
Учебно-методический комплекс представляет собой комплект учебно-методических и контролирующих материалов по дисциплине «Водоочистка» iconУчебно-методический комплекс материалов по дисциплине «Физиология центральной нервной системы»
Комплекс включает учебно-тематический план изучения дисциплины, учебную программу курса, планы проведения семинарских занятий, структуру...
Учебно-методический комплекс представляет собой комплект учебно-методических и контролирующих материалов по дисциплине «Водоочистка» iconУчебно-методический комплекс по дисциплине «Медиапсихология»
Учебно-методический комплекс предназначен для студентов очной формы обучения, содержит план лекционных и практических занятий, рекомендации...
Учебно-методический комплекс представляет собой комплект учебно-методических и контролирующих материалов по дисциплине «Водоочистка» iconУчебно-методический комплекс по дисциплине «Искусствоведение»
Учебно-методический комплекс предназначен для студентов очной формы обучения, содержит план лекционных и практических занятий, рекомендации...
Учебно-методический комплекс представляет собой комплект учебно-методических и контролирующих материалов по дисциплине «Водоочистка» iconУчебно-методический комплекс по дисциплине «Психофизиология»
Учебно-методический комплекс предназначен для студентов заочной формы обучения, содержит план лекционных и практических занятий,...
Учебно-методический комплекс представляет собой комплект учебно-методических и контролирующих материалов по дисциплине «Водоочистка» iconУчебно-методический комплекс по дисциплине «судебная медицина»
Учебно-методический комплекс предназначен для студентов очной формы обучения, содержит план лекционных и практических занятий, рекомендации...
Учебно-методический комплекс представляет собой комплект учебно-методических и контролирующих материалов по дисциплине «Водоочистка» iconУчебно-методический комплекс по дисциплине «Методы оптимальных решений»
Учебно-методический комплекс предназначен для студентов очной формы обучения, содержит план лекционных, практических и лабораторных...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск