Учебное пособие Кемерово 2004 удк: Печатается по решению Редакционно-издательского совета Кемеровского технологического института пищевой промышленности Рецензенты: коммерческий директор ОАО «Мелькорм»





НазваниеУчебное пособие Кемерово 2004 удк: Печатается по решению Редакционно-издательского совета Кемеровского технологического института пищевой промышленности Рецензенты: коммерческий директор ОАО «Мелькорм»
страница3/9
Дата публикации25.12.2014
Размер1.3 Mb.
ТипУчебное пособие
100-bal.ru > Химия > Учебное пособие
1   2   3   4   5   6   7   8   9
2.1 Спектральные методы

Среди современных методов физико-химических анализов все большее распространение приобретает спектроскопия, позволяющая получить наиболее полную информацию о важнейших свойствах продукта. Спектральные методы исследования основаны на использовании явления поглощения (или испускания) электромагнитного излучения атомами или молекулами определенного вещества. Спектральный анализ используется для определения разнообразных органических соединений, а также минеральных элементов с концентрацией 10-2 – 10-6 моля.

Спектральные методы дают широкие возможности для наблюдения и исследования соответствующих аналитических сигналов в различных областях электромагнитного спектра – рентгеновское излучение, ультрафиолетовое (УФ) излучение, видимый свет; инфракрасное (ИК), а также микро- и радиоволновое излучение.

Спектроскопию условно можно разделить на эмиссионную и абсорбционную.

Эмиссионная спектроскопия исследует излучательную способность вещества. Испускание энергии связано с предварительным термическим и энергетическим возбуждением атомов, когда электроны с основного уровня переходят при поглощении энергии на более высокий энергетический уровень.

Абсорбционная спектроскопия исследует поглощательную способность вещества. При этом анализируемую пробу помещают между источником электромагнитного излучения с определенным диапазоном частот и спектрометром. Спектрометр измеряет интенсивность света, прошедшего через пробу, в сравнении с источником первоначального излучения при заданной длине волны.

Для исследования свойств пищевых продуктов наибольший интерес представляют области: видимая (200-400 нм) со стеклянной оптикой, ультрафиолетовая (400-800 нм) с кварцевой оптикой и инфракрасная (2-15 мкм).

Под воздействием различных излучений происходят электронные переходы в молекулах вещества или свободных атомах исследуемого химического элемента (аналитический сигнал – поглощение или испускание), а также изменения ориентации спинов атомов (аналитический сигнал – ядерный магнитный резонанс) или электронов (аналитический сигнал – электронный парамагнитный резонанс). Аналитические сигналы измеряют различными методами.

В таблице 2.1 приведена классификация спектральных методов.

Таблица 2.1 – Классификация спектральных методов

Спектроскопия

Источник аналитического сигнала

Аналитический сигнал

Метод

Молекулярная

Молекула

Поглощение (абсорбция)

Испускание (люминесценция)

молекулярно-абсорбционную спектрометрию (МАС) Молекулярно-люминесцентную (МЛС), или флуориметрию

Атомная

Атом

Поглощение

(абсорбция)
Испускание (эмиссия)

атомно-абсорбционную (ААС)

Атомно-эмиссионную (АЭС)

Магнитного резонанса

Ядро атомов (магнитный момент ядра)
Электрон (магнитный момент электрона)

Ядерный магнитный резонанс – ЯМР-спектр

Электронный парамагнитный резонанс – ЭПР-спектр

Спектометрия ядерного магнитного резонанса (ЯМР)

Спектрометрия электронного парамагнитного резонанса (ЭПР)

Масс-спектроскопия

Ион

Масс-спектр

Масс-спектрометрия

По источнику и типу аналитического сигнала спектральные методы разделяют на молекулярно-абсорбционную спектрометрию (МАС) и молекулярно-люминесцентную (МЛС), или флуориметрию; на атомно-абсорбционную (ААС) и атомно-эмиссионную (АЭС), а также спектрометрию ядерного магнитного резонанса (ЯМР) и электронного парамагнитного резонанса (ЭПР).

Молекулярно-абсорбционная спектрометрия

В молекулярно-абсорбционной спектрометрии исследуют аналитические сигналы в области от 200 до 750 нм (УФ-излучение и видимый свет), вызванные электронными переходами внешних валентных электронов, а также поглощение излучения в ИК- и микроволновой области, связанное с изменением вращения и колебания молекул.

Наиболее широкое распространение получил метод, основанный на изучении поглощения в видимой области спектра в интервале длин волн от 400 до 750 нм – фотометрия; а также метод, основанный на поглощении излучения в различных частях инфракрасной области электромагнитного спектра – ИК-спектрометрия, чаще всего используют поглощение излучения в средней (длина волны 2,5 – 25 мкм) и ближней (длина волны 0,8-2,5 мкм) ИК-области.

Фотометрия

Фотометрический метод количественного анализа основан на способности определяемого вещества, компонента смеси или их окрашенных форм поглощать электромагнитное излучение оптического диапазона. Способность к поглощению зависит от цветности исследуемого вещества. Цветность определяется электронным строением молекулы, обычно ее связывают с наличием в молекуле так называемых хромофорных групп, обусловливающих поглощение электромагнитного излучения веществом в видимой и УФ-областях спектра.

Общая схема выполнения фотометрического определения едина и включает следующие стадии:

подготовку пробы и переведения определяемого вещества или компонента в раствор, в реакционноспособную, в зависимости от химизма аналитической реакции форму;

получение окрашенной аналитической формы определяемого вещества в результате проведения цветной реакции при оптимальных условиях, обеспечивающих ее избирательность и чувствительность;

измерение светопоглощающей способности аналитической формы, т.е. регистрация аналитического сигнала при определенных условиях, отвечающих его локализации и наибольшей интенсивности.

Промышленностью выпускаются различные приборы молекулярно-абсорбционной спектрометрии – колориметры, фотометры, фотоэлектроколориметры, спектрофотометры и т.д., в которых установлены различные комбинации источников света, монохроматизаторов и рецепторов. Приборы можно классифицировать следующим образом:

по способу монохроматизации лучистого потока – спектрофотометры, т.е. приборы с призменным или решеточным монохроматором, позволяющие достигать высокой степени монохроматизации рабочего излучения; фотоэлектроколориметры, т.е. приборы, в которых монохроматизация достигается с помощью светофильтров;

по способу измерения – однолучевые с прямой схемой измерения (прямопоказывающие) и двухлучевые с компенсационной схемой;

по способу регистрации измерений – регистрирующие и неригиструющие.

В настоящее время применение автоматизированного, управляемого микропроцессором фотометра в большей степени расширяет возможности спектрофотометрии: позволяет проводить измерения большого количества образцов при различных длинах волн через различные интервалы времени.

Инфракрасная спектрометрия

Инфракрасная спектроскопия (ИК) представляет собой один из новейших физических методов количественного и качественного анализа пищевых продуктов. Этот метод позволяет получать достаточно полную информацию о строении и составе органических веществ. ИК-излучение применяется для исследования жирнокислого состава молочных продуктов, широко используется для определения пестицидов в различных пищевых продуктах, при анализе пищевых красителей, а также для контроля технологических процессов при переработке растительного и животного сырья.

К настоящему времени изучены и систематизированы инфракрасные спектры более чем 20 000 соединений, что существенно облегчает практическое проведения анализа. Для получения первых ориентировочных данных часто пользуются так называемой картой Колтупа, на которой указаны спектральные области многих характеристических частот. Для окончательных выводов обычно требуется более тщательный анализ спектра. Иногда задача качественного анализа может быть решена простым сопоставлением спектра известного соединения и анализируемого вещества.

Количественный анализ по инфракрасным спектрам основан на применении закона Бугера-Ламберта-Бера. Чаще всего здесь используется метод градуировочного графика.

Применение ИК-спектроскопии чаще оказывается более полезным в качестве дополнительного метода при проведении идентификации чистых веществ после хроматографического разделения сложных компонентов пищевых продуктов. Инфракрасный спектр органического соединения является одним из наиболее однозначных физических свойств вещества. ИК-спектр более точно характеризует вещество, чем температура плавления, показатель преломления или плотность. При этом совсем не обязательно иметь образец известного для сравнения с определенным, а достаточно сопоставить полученный спектр с опубликованными кривыми поглощения. Однако для идентификации вещества необходимо знать, к какому классу органических соединений относится определяемое вещество.

Метод ИК-спектроскопии используется для определения содержания в пищевых продуктах витаминов А, К, В1, В2, В6, С, никотиновой кислоты, токоферолов и каротина. В комбинации с хроматографией ИК-спектроскопию можно применить для исследования ароматических веществ и ряда органических соединений.

Молекулярно-люминесцентная спектрометрия

Люминесценцией называют свечение атомов, ионов, молекул и других более сложных частиц вещества, которое возникает в результате перехода в них электронов при возвращении из возбужденного состояния в нормальное. Чтобы вещество начало люминесцировать, к нему необходимо извне подвести определенное количество энергии. Частицы вещества, поглощая энергию, переходят в возбужденное состояние, пребывая в нем некоторое время. Затем они возвращаются в состояние покоя, отдавая при этом часть энергии возбуждения в виде квантов люминесценции.

С помощью люминесцентного анализа (ЛА) можно обнаружить в исследуемом образце присутствие вещества в концентрации 10-11 г/г. Качественный и количественный ЛА используют для определения некоторых витаминов в пищевых продуктах, содержание белков и жиров в молоке, исследование свежести мяса и рыбы, диагностики порчи овощей, плодов и обнаружения в продуктах питания консервантов, лекарственных препаратов, канцерогенных веществ, пестицидов.

Свечение, возникающее под действием световых лучей оптического диапазона ультрафиолетовых (УФ) и видимых частот, носит название фотолюминесценции, которая в зависимости от вида возбужденного уровня и времени пребывания в нем подразделяется на флуоресценции и фосфоресценцию.

Флуоресценция – это вид собственного свечения вещества, которое продолжается только при облучении. Если источник возбуждения устранить, то свечение прекращается мгновенно или спустя не более 0,001 сек. Фосфоресценцией называют собственное свечение вещества, которое продолжается после отключения возбуждающего света.

Метод флуориметрии применяют для чувствительного определения очень малых количеств элементов при анализе органических веществ, при определении малых количеств витаминов, гормонов, антибиотиков, канцерогенных соединений и др. Основным преимуществом флуориметрии по сравнению с другими абсорбционными методами является высокая селективность, так как флуоресценцией обладает значительно меньшее число веществ (прежде всего ароматические соединения и порфирины). Ряд соединений можно перевести во флуоресцирующие, введя в молекулу флуоресцирующую группу, т.е. флуорофор (люминифор).

Атомная спектроскопия

В атомной спектроскопии вещества исследуют, переводя их в состояние атомного пара – атомно-абсорбционная спектроскопия (ААС) или газообразное состояние – атомно-эмиссионная спектроскопия (АЭС).

В атомно-абсорбционной спектроскопии для возбуждения атомов используют тепловую энергию. Распыляя образец в пламени, соединения переводят в атомный пар (атомизация). Большинство атомов возбуждаясь, переходит на более высокий энергетический уровень. При обратном переходе происходит выделение энергии. В процессе облучения атомов исследуемого элемента, находящихся в состоянии пара, линейчатым излучением того же самого элемента в возбужденном состоянии происходит резонансное поглощение. Этот процесс сопровождается уменьшением интенсивности линейчатого излучения. Измеряемое поглощение является мерой концентрации свободных атомов образца.

В атомно-эмиссионной спектроскопии возбуждения происходят при помощи электрических зарядов. При этом создаются высокие температуры, благодаря которым большинство атомов переходит в возбужденное состояние. Поглощение энергии этими атомами невозможно, поэтому происходит эмиссия (испускание) фотонов возбужденных атомов.

Определение элементов в большинстве случаев – металлов в атомной спектроскопии проводят чувствительным селективным методом при длине волны, характерной для каждого элемента.

Пределы обнаружения элементов методом атомной спектроскопии достигают 10-12 – 10-14 г.

Метод атомной спектроскопии находит широкое применение в химии, биохимии, экологии и др., а также в анализе различных видов сырья и пищевых продуктов. Метод позволяет определить около 70 различных элементов; используется для одновременного определения большого числа элементов (многоэлементнрый анализ); для серийного анализа, благодаря высокой чувствительности и быстроте.

Спектроскопия магнитного резонанса.

Масс-спектроскопия

Применение радио- и микроволновой областей электромагнитного спектра в аналитической химии и физико-химических исследованиях основывается на явлениях ядерного магнитного и электронного парамагнитного резонансов.

Спектроскопия ядерного магнитного резонанса (ЯМР) изучает магнитный резонанс, возникающий в результате взаимодействия магнитного момента ядра с внешним магнитным полем. С помощью метода ЯМР можно исследовать ядра с собственным моментом количества движения (спин ядра) и связанным с ним магнитным моментом ядра.

Вещество, исследуемое методом ЯМР, помещают одновременно в два магнитных поля – одно постоянное, а другое радиочастотное. Измерение осуществляют на ЯМР-спектрометре, основными составляющими элементами которого являются: электромагнит (в простых приборах используют постоянный магнит); генератор радиочастотного излучения; датчик, в который помещают пробирку с образцом; электронный усилитель и интегратор; самописец.

Методы ЯМР значительно производительнее по сравнению с базовыми методами анализа и во многих случаях отличаются меньшей погрешностью определения, вместе с тем они требуют использования специально подготовленных образцов сравнения и иногда взвешивания пробы. Данные методы используют в основном для оценки состояния и свойств воды и жира в сырье и готовой продукции.

Масс-спектрометрия занимает особое положение среди спектроскопических методов. В строгом смысле слова этот метод не является спектрометрическим, так как вещество при анализе не подвергается воздействию электромагнитного излучения. Этот метод получил свое название из-за формального сходства и графического изображения масс-спектров со спектрами спектроскопических методов. Масс-спектроскопия основана на изучении тока от фрагментов ионов, полученных из нейтральных молекул вещества путем воздействия на них пучка электронов.

Метод масс-спектрометрии применяют в научно-исследователь-ской практике для идентификации соединений и установления строения неизвестных веществ, точного определения молекулярной массы, определения элементного состава, анализа следовых количеств биологически активных соединений, определения аминокислотной последовательности пептидов, анализа многокомпонентых смесей и т.п.

2.2 Рефрактометрия и поляриметрия

Рефрактометрический и поляриметрический оптические методы широко используют в практике анализа пищевых продуктов.

При прохождении через поверхность раздела двух сред световой луч отклоняется от первоначального направления, т.е. преломляется. Величина угла отклонения зависит орт концентрации и температуры среды. Угол падения и преломления связан соотношением, которое называется показателем преломления. Рефрактометрия основана на измерении показателя преломления.

Некоторые вещества обладают оптической активностью. Они способны вращать плоскость поляризованного луча. Метод поляриметрии основан на определении угла вращения поляризованного луча.

Рефрактометрия

Если монохроматический луч А проходит через поверхность раздела двух сред, то одна часть света отражается от поверхности раздела, а другая часть В проходит через вторую среду, изменяя при этом направление (рисунок 2.1). Эту часть монохроматического света называют преломленным светом. Преломление луча света описывается законом Снелля:

(2.1)

где α – угол падения, град;

β – угол преломления, град;

n1, n2 – показатель преломления 1-й и 2-й сред.


Рисунок 2.1 – Схема преломления лучей света

Метод рефрактометрии основан на определении показателя преломления (рефракции). Показатель преломления зависит от температуры и концентрации раствора, а также от длины волны проходящего света.

Так как показатель преломления зависит от такого фактора, как температура, поэтому рефрактометрические измерения принято выполнять при температуре 200С. При отклонении температуры от 200С вводят соответствующие температурные поправки.

Для измерения показателя преломления жидких веществ и растворов применяют приборы, называемые рефрактометрами. Большинство рефрактометров устроено так, что исследуемое вещество помещается между двумя призмами (двумя половинами призмы). Свет, пропущенный через призму, преломляясь или отражаясь от границы раздела сред (призма-вещество), освещает только часть шкалы, образуя достаточно резкую границу света и тени. Положение этой границы на шкале зависит от угла полного внутреннего отражения исследуемого вещества. На шкале указаны показатели преломления, соответствующие различным значениям угла полного внутреннего отражения.

Для определения составных частей сырья и готовой продукции используют различные рефрактометры ИРФ-454, ИРФ-464 и др.

Все измерения проводят в белом свете. Показатель преломления прозрачных сред определяют в проходящем свете, а полупрозрачных – в отраженном.

Рефрактометрию широко применяют при установлении концентрации углеводов в различных продуктах, массовой доли сухих веществ. Этим методом пользуются также для количественного определения жиров в пищевых продуктах, для пофазного контроля в процессе производства пищевых продуктов – кондитерских, напитков, некоторых видов консервов и т.д.

Поляриметрия

Атомы молекул некоторых веществ способны поляризоваться, т.е. приобретать дипольный момент в электрическом поле. Поляризация атомов обусловлена смещением в молекуле атомов разного типа, что связано с несимметричным распределением в молекуле электронной плотности – ассиметрические атомы. Вещества, содержащие такие атомы, обладают оптической активностью. Они способны вызывать вращение плоскости поляризации проходящего через исследуемое вещество света. Метод исследования веществ, основанный на измерении величины угла вращения плоскости поляризации света при прохождении его через оптически активные вещества, называется поляриметрией. Величина такого вращения в растворах зависит от их концентрации, поэтому поляриметрию широко применяют для измерения концентрации оптически активных веществ, например сахаров.

Вещества, обладающие свойством изменять направление колебаний при прохождении через них поляризованного света, называются оптически анизотропными, или оптически активными.

Оптическая активность веществ обусловлена особенностями строения кристаллической решетки - в этом случае вещества проявляют оптическую активность только в твердом кристаллическом состоянии, или особенностями строения молекул - оптическая активность таких веществ проявляется только в растворах.

К веществам последней группы относятся главным образом такие органические вещества, как сахароза, фруктоза, глюкоза, винная кислота. Поляриметрический метод разработан для количественного определения веществ именно этой группы.

Оптическая активность вещества характеризуется удельным вращением, под которым понимается угол, на который повернется плоскость поляризации при прохождении поляризованного луча через раствор, в 1 мл которого содержится 1 г растворенного вещества, при толщине слоя раствора (длине поляризационной трубки), равной 1 дм.

Под плоскостью поляризации понимается плоскость, проходящая через поляризованный луч перпендикулярно направлению его колебаний.

Удельное вращение зависит не только от природы вещества, но и от температуры, длины поляризованного света и растворителя, поэтому его принято относить к температуре 200С и желтой линии натрия и обозначать [σ] с указанием растворителя.

Угол вращения плоскости поляризации [α] определяют по формуле

α = [σ], (2.2)

где l – длина трубки, дм;

с – концентрация вещества, г/100 мл;

σ – удельное вращение, град.

Пользуясь формулой (4), вычисляем количество вещества в граммах, содержащееся в 100 мл раствора, т.е. концентрацию (с).

с = , (2.3)

Исследования методом полярометрии осуществляют с помощью прибора поляриметра или его разновидностью сахариметра, с помощью которого можно определять содержание сахарозы в растворе неизвестной концентрации без предварительного взятия навески.

2.3 Хроматография

Хроматографические методы широко применяют при исследовании состава и свойств пищевых продуктов. Они позволяют проводить исследования, не выполнимые другими инструментальными методами.

В основе хроматографических методов лежит широкий круг физико-химических процессов: распределение, адсорбция, ионный обмен, диффузия, комплексообразование и др.

В зависимости от природы процесса, обуславливающего механизм разделения, т.е. от типа взаимодействия между компонентами разделяемой смеси, подвижной и неподвижной фазами различают следующие основные варианты хроматографии: распределительную, адсорбционную, ионообменную и гель-фильтрационную.

Хроматографические методы также принято классифицировать в соответствии с выбранным типом подвижной и неподвижной фаз. Газовая хроматография (ГХ) объединяет те методы, в которых подвижной фазой является газ; жидкостная хроматография (ЖХ) – методы, в которых подвижной фазой служит жидкость.

В зависимости от агрегатного состояния обеих фаз различают следующие виды хроматографии: твердо-жидкостную хроматографию (ТЖХ), жидкость-жидкостную (ЖЖХ), газо-адсорбционную (ГАХ), газо-жидкостную (ГЖХ).

В настоящее время преимущественное развитие получила газовая хроматография (ГХ), чему способствовало создание чувствительных и универсальных газовых хроматографов с автоматическим детектированием. Этот метод предназначен для разделения и анализа летучих (в том числе и летучих при высоких температурах) соединений. На сегодняшний день – это один из наиболее эффективных способов анализа органических компонентов. Применяется при контроле качества, сертификации продукции, технологическом контроле и экологической безопасности.

Метод ГХ хорошо поддается автоматизации, в чем его неоспоримое преимущество перед другими современными физико-химическим исследованиями. Будучи одновременно и качественным и количественным методом анализа сложных смесей различных органических и неорганических соединений, ГХ используется и для комплексного изучения пищевых продуктов.

Газовая хроматография отличается от других хроматографических методов тем, что газ используется как подвижная фаза, а растворенное вещество перемещается по колонке в виде газа или пара, частично растворенного или адсорбированного в неподвижной фазе.

Разделение компонентов смеси основано на различной адсорбируемости или растворимости анализируемых компонентов при движении их газообразной смеси вдоль поверхности твердого тела или неподвижной жидкости в колонке.

При прохождении через колонку отдельные компоненты улавливаются (адсорбируются) активным адсорбентом или растворяются в пленке неподвижной жидкой фазы, нанесенной на поверхность инертного носителя. В результате неодинаковой адсорбируемости или различного взаимодействия с жидкой фазой компоненты смеси продвигаются по колонке с различными скоростями. Движение молекул веществ, обладающих более высокой сорбируемостью в жидкой фазе, замедляется, а неадсорбируемые или нерастворимые компоненты выходят из колонки первыми.
2.4 Реологические методы исследования

Пищевое сырье растительного и животного происхождения при заготовке (уборка урожая, убой скота, лов рыбы и.т.д.), транспортировании, хранении и особенно при переработке в продукты питания подвергается различным механическим воздействиям. При этом производственные процессы должны быть организованы так, чтобы обеспечить максимально высокий уровень качества готовой продукции. Успешному решению этой задачи способствует знание реологических свойств и текстуры пищевых продуктов.

Пищевое сырье, полуфабрикаты и продукты относятся к реальным телам, которые обладают упругостью, пластичностью и вязкостью. В зависимости от вида, продолжительности и скорости нагружения реального тела некоторые из реологических свойств проявляются особенно ярко, в то время как другие едва заметны, и поэтому при выбранном нагружении ими можно пренебречь. Для инструментального определения реологических характеристик наиболее пригодны простой сдвиг (сдвиговой течение), одноосное растяжение и одноосное растяжение и одноосное сжатие (компрессия).

Наиболее сложными реологическими свойствами обладают высококонцентрированные дисперсные системы с пространственными структурами.

По классификации, предложенной академиком П.А.Ребиндером структуры дисперсных систем в состоянии термодинамического равновесия, делятся на две группы:

1 – коагуляционные структуры, в которых взаимодействие между элементами происходит через тонкий слой дисперсионной среды и обусловлено силами Ван-дер-Ваальса (эти структуры могут проявлять свойства ньютоновских жидкостей (тиксотропию, пластичность, а также способны сильно изменять свои свойства при нагреве, введении ПАВ и других факторов);

2 – конденсационно-кристаллизационые структуры, которые возникают при сцеплении однотипных элементов на границе раздела фаз. Такие структуры обладают относительно высокой прочностью, упругостью и хрупкостью. После разрушения они не восстанавливаются.

Под действием внешней нагрузки в любом продукте возникают деформации и напряжения, которые зависят от состава и строения выбранных объектов исследования, являясь мерой сил внутреннего взаимодействия между элементами их структуры.

Структурно-механические характеристики (СМХ) используют для оценки консистенции продукта как одного из основных показателей его качества. Оценка консистенции продукта осуществляется либо путем измерения СМХ на специальных приборах (реометрах), либо путем сенсорной (органолептической) оценки, т.е. субъективной оценки сопротивляемости и деформации продукта.

Таблица 2.2 - Типы дисперсных систем пищевых продуктов


Дисперсионная среда

Дисперсная фаза

Дисперсная система

Продукт

(в том числе сырье, полуфабрикат)

Газ

Жидкость

Жидкий аэрозоль

Экстракт кофе при распылительной сушке

Твердое тело

Твердый аэрозоль

Мука при пневмотранспортировании

Жидкость

Газ

Пена

Белковая пена

Жидкость

Эмульсия

Молоко, майонез

Твердое тело

Золь

Какао-масса

Суспензия

Фруктовый сок

Твердое

тело

Газ

Твердая пена, пористое твердое тело

Мороженое, безе, сухари

Жидкость

Твердая эмульсия

Масло, маргарин

Пористое твердое тело, заполненное жидкостью

Овощи, фрукты

Твердое тело

Твердая суспензия

Макаронные изделия, шоколад, карамель

Сенсорная оценка консистенции, которую можно характеризовать как эмпирическую характеристику деформационного поведения продукта, была известна до широкого применения реологического анализа и используется до настоящего времени. Однако результаты сенсорной оценки зависят от квалификации дегустатора, тщательности проведения контроля с условием выполнения определенных правил, гарантирующих точность и воспроизводимость результатов, и при отсутствии специально подобранных и обученных экспертов, часто носят субъективный характер.

Таблица 2.3 – Сложные дисперсные системы пищевых продуктов

Продукт

Дисперсная фаза

Дисперсионная среда

Шоколад

Кристаллы сахара, твердые частицы какао, пузырьки воздуха

Кристаллическая форма какао-масла

Мороженое

Пузырьки воздуха, капельки жира, белковые макромолекулы

Кристаллическая водянистая фаза

Мякиш хлеба

Пузырьки воздуха, частично кристаллические молекулы крахмала, частицы отрубей

Крахмальный и белковый гель

Фрукты, овощи, картофель, зерно, масличные семена

Капельки жидкости, пузырьки воздуха, крахмальные зерна

Целлюлоза, белковая оболочка

Мясо

Капельки жидкости, кости, капельки жира

Белковые макромолекулы


Оценку консистенции продукта инструментальными методами (измеряя его СМХ) проводят следующим образом:

1.В зависимости от видов и интенсивности механического воздействия (нагружения во времени) определяют различные СМХ, из которых выбирают наиболее чувствительную к изменению структуры продукта при его деформации. Выбранная СМ является реологическим показателем консистенции (измеряемой величиной) для данного продукта.

2.Предварительно проводят определение «эталонного» значения СМХ для каждого вида продукта по существующим методикам оценки качества продукта. При этом в качестве «эталонного» принимают значение СМХ продукта высшего качества.

3.Сравнивают величину выбранного реологического показателя для исследуемого образца продукта с «эталонным» для него значением СМХ и по их разности судят о консистенции продукта.

Реометрия имеет целью определить все наиболее существенные реологические константы посредством специального механического воздействия на исследуемое тело.

Так как не всегда при определенном виде деформации тела одновременно появляются все его реологические свойства, то для полной количественной оценки реологических свойств тела необходимо применять различные методы нагружения. Инструментальное определение реологических констант требует правильного выбора методов измерений и приборов (реометров). Большинство приборов, их теория действия и примерный спектр изучаемых материалов широко освещены в справочной литературе.

В зависимости от поставленной задачи полученные результаты могут быть использованы для определения качества готового продукта, регулирования параметров технологического процесса производства, служить исходными данными при конструировании технологического оборудования и т.п.

Глава 3. ПРИКЛАДНОЕ ИСПОЛЬЗОВАНИЕ ФИЗИКО-

ХИМИЧЕСКИХ МЕТОДОВ ПРИ ОЦЕНКЕ КАЧСТВА

СЫРЬЯ И ГОТОВОЙ ПРОДУКЦИИ

Рассмотрим наиболее важные прикладные методы оценки качества и готовой продукции.

3.1 Относительная плотность

Относительная плотность определяется как отношение плотно­сти исследуемого вещества к плотности «стандартного» вещества в определенных физических условиях:

d = , (3.1)

где ρ - плотность данного вещества (кг/м3);

ρ0 - плотность «стандартного» вещества (кг/м3).

Плотность вещества, р, кг/м3, определяется как отношение по­коящейся массы, m (кг) к ее объему v(м3):

ρ = , (3.2)

Для жидких пищевых веществ «стандартным» веществом явля­ется чистая вода при температуре 3,98°С и нормальном атмосферном давлении, что соответствует наибольшей ее плотности.

Относительную плотность определяют при температуре продук­та 20°С и воды 4°С или 20°С и обозначают символами d или d. Для пересчета значений плотности d в d или на­оборот пользуются температурными коэффициентами расширения.

d = 1,00177 d и d = 0,99823 d

Относительная плотность жидких продуктов зависит не только от их температуры, но и от концентрации сухих веществ.

Показатели плотности учитываются при оценке качества моло­ка, определении содержания сухих веществ в плодовых и ягодных экстрактах, содержания поваренной соли в растворах.

Для определения относительной плотности чаще всего приме­няют пикнометрический или ареометрический метод.

Пикнометрический метод основан на определении массы равных объемов исследуемого продукта и воды при температуре 20°С с помощью прибора пикнометра, который взвешивается, термостатируется вместе с исследуемым продуктов и отдельно с дистиллированной водой.

Плотность исследуемого продукта вычисляется по формуле

d20 = , (3.3)

где m - масса пустого пикнометра, г;

ml - масса пикнометра с исследуемой жидкостью, г;

m2 - масса пикнометра с дистиллированной водой, г.

Ареометрический метод проводят с помощью прибора ареометр со шкалой, показывающей плотность. В исследуемый жидкий продукт погружают ареометр до тех пор, пока масса жидкого продукта, вытесненного им, не станет равной массе ареометра. Плотность жидкого продукта определяют по градуированной шкале ареометра в зависимости от уровня его погружения. Внутри некоторых ареометров имеется термометр, которым можно измерять температуру исследуемого жидкого продукта.

3.2 Кислотность

Кислотность является одним из показателей качества сырья, полуфабрикатов и готовых изделий, в частности, молока и молочных продуктов, соков, сиропов, булочных изделий и др. и характеризует степень их свежести. Под общей кислотностью подразумевается содержание в продукте всех кислот и их кислых солей, реагирующих со щелочью при титровании.

Метод определения титруемой кислотности основан на нейтрализации кислот, содержащихся в продукте, раствором гидроксида натрия в присутствии индикатора фенолфталеина. Титруемую кислотность выражают в градусах Тернера (0Т) или градусах Кеттстофера (0К), а также в процентах какой-либо кислоты.

Один градус Тернера соответствует объему (см3) водного раствора гидроксида натрия концентрацией 0,1 моль/дм3, необходимый для нейтрализации 100 г (100 см3) исследуемого продукта.

Для определения общей кислотности приготавливают вытяжку исследуемого образца, добавляют индикатор 1%-ый фенолфталеин и титруют 0,1 моль/дм3 раствором щелочи до слабо-розового окрашивания, не исчезающего (при спокойном стоянии пробы) 1 мин. Замечают объем раствора щелочи, пошедшего на титрование, и рассчитывают титруемую кислотность по формуле, соответствующей данному виду продукта, указанной в конкретной методике.

Активная кислотность также является показателем качества некоторых видов продукции и сырья, таких как бульоны, мясные полуфабрикаты, охлажденная продукция и др. Определяют ее электрометрически с помощью приборов рН-метров разных марок. В состав приборов входят стеклянный и вспомогательный электрод, при погружении которых в раствор исследуемого образца происходит обмен ионами между поверхностью стеклянного электрода и раствора. В результате этого ионы лития в поверхностных слоях стекла замещаются ионами водорода, и стеклянный электрод приобретает свойства водородного электрода. Показатель рН контролируемого раствора определяют по шкале прибора.
1   2   3   4   5   6   7   8   9

Похожие:

Учебное пособие Кемерово 2004 удк: Печатается по решению Редакционно-издательского совета Кемеровского технологического института пищевой промышленности Рецензенты: коммерческий директор ОАО «Мелькорм» iconКонспект лекций лабораторный практикум контрольные задания учебное...
Печатается по решению Редакционно-издательского совета Кемеровского технологического института пищевой промышленности
Учебное пособие Кемерово 2004 удк: Печатается по решению Редакционно-издательского совета Кемеровского технологического института пищевой промышленности Рецензенты: коммерческий директор ОАО «Мелькорм» iconУчебное пособие Для студентов вузов Кемерово 2004
Печатается по решению редакционно-издательского совета Кемеровского технологического института пищевой промышленности в авторской...
Учебное пособие Кемерово 2004 удк: Печатается по решению Редакционно-издательского совета Кемеровского технологического института пищевой промышленности Рецензенты: коммерческий директор ОАО «Мелькорм» iconУчебное пособие для студентов специальности 271200 «Технология продуктов общественного питания»
Печатается по решению редакционно-издательского совета Кемеровского технологического института пищевой промышленности
Учебное пособие Кемерово 2004 удк: Печатается по решению Редакционно-издательского совета Кемеровского технологического института пищевой промышленности Рецензенты: коммерческий директор ОАО «Мелькорм» iconУчебное пособие для студентов специальности 271200 «Технология продуктов...
Печатается по решению Редакционно-издательского совета Кемеровского технологического института пищевой промышленности в авторской...
Учебное пособие Кемерово 2004 удк: Печатается по решению Редакционно-издательского совета Кемеровского технологического института пищевой промышленности Рецензенты: коммерческий директор ОАО «Мелькорм» iconПравоведение
Печатается по решению редакционно-издательского совета Кемеровского технологического института пищевой промышленности в авторской...
Учебное пособие Кемерово 2004 удк: Печатается по решению Редакционно-издательского совета Кемеровского технологического института пищевой промышленности Рецензенты: коммерческий директор ОАО «Мелькорм» iconТ. Л. Сметанина Т. В. Подсосенко
Печатается по решению редакционно-издательского совета Кемеровского технологического института пищевой промышленности в авторской...
Учебное пособие Кемерово 2004 удк: Печатается по решению Редакционно-издательского совета Кемеровского технологического института пищевой промышленности Рецензенты: коммерческий директор ОАО «Мелькорм» icon1. Качество продовольственного товаров и обеспечение его контроля
Печатается по решению Редакционно-издательского совета Кемеровского технологического института пищевой промышленности в авторской...
Учебное пособие Кемерово 2004 удк: Печатается по решению Редакционно-издательского совета Кемеровского технологического института пищевой промышленности Рецензенты: коммерческий директор ОАО «Мелькорм» iconТехнология производства продукции общественного питания конспект лекций
Печатается по решению Редакционно-издательского совета Кемеровского технологического института пищевой промышленности в авторской...
Учебное пособие Кемерово 2004 удк: Печатается по решению Редакционно-издательского совета Кемеровского технологического института пищевой промышленности Рецензенты: коммерческий директор ОАО «Мелькорм» iconКурс лекций для студентов специальности 351100 "Товароведение и экспертиза...
Печатается по решению Редакционно-издательского совета Кемеровского технологического института пищевой промышленности
Учебное пособие Кемерово 2004 удк: Печатается по решению Редакционно-издательского совета Кемеровского технологического института пищевой промышленности Рецензенты: коммерческий директор ОАО «Мелькорм» iconУчебно-методическое пособие Тамбов 2002 г. I. Ббк 32. 81 II. Ав
...
Учебное пособие Кемерово 2004 удк: Печатается по решению Редакционно-издательского совета Кемеровского технологического института пищевой промышленности Рецензенты: коммерческий директор ОАО «Мелькорм» iconРусский язык и культура речи
Печатается по решению редакционно-издательского совета Владимирского института бизнеса
Учебное пособие Кемерово 2004 удк: Печатается по решению Редакционно-издательского совета Кемеровского технологического института пищевой промышленности Рецензенты: коммерческий директор ОАО «Мелькорм» iconУчебное пособие по устному и письменному переводу для переводчиков...
Печатается по постановлению Редакционно-издательского совета Института иностранных языков (Санкт-Петербург)
Учебное пособие Кемерово 2004 удк: Печатается по решению Редакционно-издательского совета Кемеровского технологического института пищевой промышленности Рецензенты: коммерческий директор ОАО «Мелькорм» iconУчебное пособие издается по решению Редакционно-издательского совета...

Учебное пособие Кемерово 2004 удк: Печатается по решению Редакционно-издательского совета Кемеровского технологического института пищевой промышленности Рецензенты: коммерческий директор ОАО «Мелькорм» iconПрограмма по формированию навыков безопасного поведения на дорогах...
Печатается по решению редакционно-издательского совета Ишимского государственного педагогического института им. П. П. Ершова
Учебное пособие Кемерово 2004 удк: Печатается по решению Редакционно-издательского совета Кемеровского технологического института пищевой промышленности Рецензенты: коммерческий директор ОАО «Мелькорм» iconИстория фармации: пособие к семинарским занятиям для студентов (специальность: фармация)
Печатается по решению редакционно-издательского Совета Орловского государственного университета, протокол № от
Учебное пособие Кемерово 2004 удк: Печатается по решению Редакционно-издательского совета Кемеровского технологического института пищевой промышленности Рецензенты: коммерческий директор ОАО «Мелькорм» iconО. Г. Филатова подготовка и защита курсовой и дипломной работы методическое пособие
Печатается по решению Учебно-методической комиссии и Редакционно-издательского совета факультета журналистики спбГУ


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск