Медицинская информатика





НазваниеМедицинская информатика
страница5/11
Дата публикации06.11.2014
Размер1.4 Mb.
ТипУчебное пособие
100-bal.ru > Информатика > Учебное пособие
1   2   3   4   5   6   7   8   9   10   11

Компонентами АСУ являются:

  1. Технические средства – вычислительные устройства, устройства ввода-вывода, запоминающие и накопительные устройства, сетевое оборудование.

  2. Программное обеспечение – компьютерные программные средства, обеспечивающие работу технических средств и обработку информации.

  3. Пользователь или оператор, который осуществляет взаимосвязь с программными и аппаратными средствами системы.

Любая АСУ в процессе своей работы должна выполнять следующие функции:

  1. сбор, обработка и анализ информации о состоянии объекта управления (например, посредством АСУ в стационаре собирается информация о каждом пациенте, рассчитываются и анализируются показатели работы каждого врача, лечебного и вспомогательного отделения и учреждения в целом);

  2. выработка управляющих воздействий (например, АСУ, располагая сведениями о потребности в медикаментах и наличии их в аптеке, может в автоматическом режиме принять решение о необходимости приобретения лекарственных препаратов);

  3. передача управляющих воздействий на исполнение и контроль их передачи (например, АСУ передает в бухгалтерию заявку на приобретение медикаментов);

  4. реализация и контроль выполнения управляющих воздействий (АСУ контролирует поступление новых медикаментов в аптеку и лечебное отделение);

  5. обмен информацией с другими связанными с ней автоматизированными системами (например, показатели работы учреждения АСУ направляет в министерство здравоохранения и центр медицинской статистики).

К АСУ предъявляется ряд общих требований:

  1. должна быть обеспечена совместимость элементов АСУ друг с другом, а также с внешними АСУ, взаимодействующими с рассматриваемой - все компоненты АСУ должны «общаться на одном языке»;

  2. должна предполагаться возможность расширения, развития и модернизации АСУ с учетом перспектив учреждения (например, при создании нового отделения, оно должно быть легко и быстро включаться в АСУ ЛПУ);

  3. АСУ должна обладать достаточной адаптивностью к изменениям условий ее использования (например, внедрение в практику новых нормативных актов, должно найти соответствующее отражение в алгоритмах АСУ);

  4. АСУ должна иметь достаточную степень надежности, так как любой сбой в ее работе негативно отразится на деятельности всего учреждения;

  5. должны быть предусмотрены контроль правильности выполнения автоматизированных функций и возможность диагностирование системы, позволяющие выявить место, вид и причину неполадки;

  6. должны быть предусмотрены меры защиты от неправильных действий персонала, а также от несанкционированного вмешательства и утечки информации.

Современные автоматизированные системы управления строятся на основе концепции локальной обработки информации. Структурной единицей такой АСУ является автоматизированное рабочее место (АРМ) - комплекс средств вычислительной техники и программного обеспечения, располагающийся непосредственно на рабочем месте сотрудника и предназначенный для автоматизации его работы в рамках специальности.

Однако простую совокупность АРМ еще нельзя считать автоматизированной системой управления. В АСУ все элементы должны быть связаны между собой средствами коммуникации (локальной сетью). Именно они, обеспечивая обмен информацией между рабочими местами, делают АСУ системой.

Рассмотрим этот вопрос на примере АСУ стационара. Как известно, основным документом в стационаре является медицинская карта стационарного больного, обычно именуемая историей болезни. Именно она служит основой для объединения АРМ в систему. Речь идет об электронной автоматизированной истории болезни. Она представляет собой комплекс данных о больном, хранящихся в электронном виде в сетевой накопительной базе (в архиве электронных историй болезни).

Благодаря тому, что все АРМ связаны между собой (и, естественно, с архивом электронных историй болезни) средствами коммуникации (в данном случае – локальной сетью), каждый из компетентных сотрудников ЛПУ может работать с историей болезни любого больного непосредственно на своем рабочем месте. Так, в одно и то же время, находясь в различных помещениях, лечащий врач может записывать дневник, лаборант клинической лаборатории – вносить результаты анализа крови, а врач-рентгенолог – описывать рентгенограммы. Кроме того, средства автоматизации некоторых рабочих мест, могут автономно, без участия оператора, обращаться к историям болезни. Например, АРМ постовой сестры может выбирать из историй болезни назначения, группируя их по видам, а АРМ врача – оформлять и направлять в соответствующие службы направления на различные исследования (естественно, руководствуясь сделанными врачом назначениями).

Так осуществляется оперативный обмен медицинской информацией между специалистами, отделениями, службами. В то же время, работа с электронной историей болезни лежит в основе автоматизации управления ЛПУ. База данных историй болезни позволяет произвести обобщающие аналитические, статистические и экономические расчеты с любой степенью детализации в автоматическом режиме. Немаловажно, что такие данные отличаются высокой точностью и достоверностью. Это способствует повышению адекватности и своевременности принимаемых управленческих решений и эффективности управления в целом.

Принято выделять следующие этапы разработки АСУ:

  1. Системный анализ и выбор цели автоматизации. (Необходимо определить, что будет делать система и каковы требования, которым она должна удовлетворять, чтобы быть принятой пользователями, учитывая их меняющиеся потребности и различные интересы. Нужно обозначить целевую функцию системы и определить способы ее достижения.)

  2. Определение приоритетных отдельных задач. (Выявление задач, которые необходимо решить на первом этапе автоматизации.)

  3. Исследование информационных потоков. (Подготовка схем движения информации и взаимодействия всех компонентов или рабочих групп подразделений. Изучение потоков документации. Уточнение маршрутов движения пациентов и сопровождающих документов по подразделениям ЛПУ, начиная с момента поступления и регистрации до передачи документов на хранение или выхода за пределы учреждения.)

  4. Определение комплекса первоочередных задач. (Устанавливается очередность разработки и внедрения отдельных частей информационной системы. Выбранный в результате системного анализа комплекс первоочередных задач автоматизации определяет направление и этапы дальнейших работ по созданию АСУ)

  5. Разработка правового обеспечения автоматизации и изменение организационной структуры учреждения. (Определяется круг прав и обязанностей сотрудников ЛПУ, а также основные, принципиальные линии поведения в условиях неопределенности. Устанавливается порядок взаимоотношений структурных подразделений между собой, администрацией, внешними организациями.)

  6. Разработка технического задания. (Представляются основные данные для разработки АСУ, требования к задачам, которые должны быть реализованы, а также к техническому комплексу, информационному и математическому обеспечению системы.)

  7. Разработка или модификация средств программного обеспечения.

  8. Внедрение. (Проверка выполнения заданных функций системы, выявление и устранение недостатков в действиях системы и разработанной документации.)

ЗАДАНИЕ 1

Познакомьтесь со структурной схемой программного комплекса автоматизированной больничной информационной системы (АБИС) крупного многопрофильного стационара.

ЗАДАНИЕ 2

Составьте структурную схему программного комплекса автоматизированной больничной информационной системы предложенного лечебно-профилактического учреждения. Какие компоненты АБИС отсутствуют в вашей схеме? Какие дополнительные структурные подразделения вы отметили в созданной схеме? В каком по-вашему мнению направлении необходимо провести усовершенствование АБИС предложенного лечебно-профилактического учреждения.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

  1. Что вы понимаете под термином информационная система.

  2. В чем заключается основная задача информационных систем медицинского назначения.

  3. Перечислите классы медицинских информационных систем в зависимости от уровней управления и организации.

  4. Перечислите классы медицинских информационных систем, определяющихся спецификой решаемых ими задач.

  5. Назовите функции каждой из перечисленных информационных систем.

  6. Что Вы понимаете под автоматизированной системой управления, какова ее роль в деятельности ЛПУ.

  7. Какие уровни АСУ вам известны.

  8. Назовите компоненты АСУ

  9. Перечислите функции АСУ.

  10. Сформулируйте требования к АСУ.

  11. Опишите структуру АСУ.

  12. Какие этапы разработки АСУ принято выделять.



ЗАНЯТИЕ №3

Автоматизированное рабочее место врача: аппаратное обеспечение. Медицинские приборно-компьютерные
системы.


Цель: Ознакомиться аппаратным обеспечением автоматизированного рабочего места врача – медицинскими приборно-компьютерными системами.

Необходимо знать: понятие автоматизированного рабочего места врача, медицинской приборно-компьютерной системы; классификацию медицинских приборно-компьютерных систем по функциональным возможностям, по назначению; назначение медицинских приборно-компьютерных систем для функциональной диагностики, лучевой диагностики, мониторных систем, систем для управления лечебным процессом; этапы компьютеризированного функционального исследования.

Необходимо уметь: определять на практике тип медицинской приборно-компьютерной системы, ее назначение и основные принципы работы.

Автоматизированное рабочее место врача

Структурной единицей автоматизированной системы управления является автоматизированное рабочее место (АРМ).

Автоматизированное рабочее место - комплекс средств вычислительной техники и программного обеспечения, располагающийся непосредственно на рабочем месте сотрудника и предназначенный для автоматизации его работы в рамках специальности.

АРМ врача как и любая компьютерная система, оно состоит из аппаратных средств и программного обеспечения. В большинстве случаев к аппаратным средствам особых требований не предъявляется. Однако врачи некоторых специальностей нуждаются в специальных устройствах ввода информации, нередко в их роли выступают медицинские приборы. Например, автоматизированное рабочее место врача функциональной диагностики должно содержать в качестве устройств ввода информации электрокардиограф, спирограф и т.д.

Медицинские приборно-компьютерные системы

Современная медицина немыслима без широкого применения приборов и устройств. В последнее время наметилась тенденция компьютеризации медицинской аппаратуры. Использование компьютеров в сочетании с измерительной и управляющей техникой позволило создать новые эффективные средства для обеспечения автоматизированного сбора, обработки и хранения информации о больном и управлении его состоянием – медицинские приборно-компьютерные системы (МПКС).

Рассмотрим классификацию современных МПКС.

По функциональным возможностям выделяют клинические и исследовательские системы. Первые ориентированы на выполнение строго очерченного круга типовых медицинских методик. Ограниченность таких систем является их бесспорным достоинством, так как позволяет максимально упростить работу с ними, сделав ее доступной для среднего медперсонала. Исследовательские системы содержат широкий набор управляющих, аналитических, изобразительных и конструкторских средств, позволяющих реализовывать разнообразные методики, как клинического, так и научно-исследовательского назначения. Поэтому работа с такими системами с полнотой использования предоставляемых возможностей требует повышенной профессиональной квалификации и творческого мышления. В тоже время после реализации конкретной методики, она может быть зафиксирована, и последующее ее исполнение по своей трудоемкости и требованию квалификации персонала не будет существенно отличаться от работы с клинической системой.

Существует и другая классификация по функциональным возможностям. Согласно ей выделяют специализированные, многофункциональные и комплексные системы. Первые предназначены для проведения исследований одного типа, например, электрокардиографических. Многофункциональные системы позволяют проводить исследования нескольких типов, основанных на схожих принципах, например, электрокардиографические и электроэнцефалографические. Комплексные системы обеспечивают комплексную автоматизацию многогранной медицинской задачи.

По назначению МПКС можно разделить на несколько классов: системы для проведения функциональных исследований, системы лучевой диагностики, мониторные системы, системы управления лечебным процессом, системы лабораторной диагностики, системы для научных медико-биологических исследований.

Наибольшее развитие получили МПКС для функциональной диагностики. Показатели, изучаемые в рамках функциональной диагностики, по способу измерения могут быть разделены на три группы.

  1. Биоэлектрические показатели прямого измерения – это электрические потенциалы, генерируемы организмом человека:

  • электроэнцефалограмма (ЭЭГ), отражающая изменение биопотенциалов головного мозга;

  • вызванные потенциалы (ВП) - фоновые изменения среднего уровня ЭЭГ в ответ на внешние раздражители;

  • электрокардиограмма (ЭКГ) - электрическая активность сердца, вызывающая сокращения сердечных мышц;

  • электромиограмма (ЭМГ) представляет электрическую активность, связанную с сокращением скелетных мышц;

  • электрокулограмма (ЭОГ) является электромиограммой мышц, управляющих движениями глазного яблока.

  1. Показатели косвенного электроизмерения выражаются в изменении электрического сопротивления участков кожи и тела человека, для измерения которого необходимо дополнительное пропускание тока через исследуемый орган:

  • реограмма (РГ) характеризует изменение объемного сопротивления участков тела и органов, вызванное движением крови по сосудам, то есть изменением кровенаполнения;

  • кожно-гальваническая реакция (КРГ) - изменение сопротивления кожи как реакция на раздражения эмоционального и болевого характера, отражающиеся на деятельности потовых желез.

  1. Показатели преобразовательного измерения отражают различные процессы биохимического или биофизического происхождения, требующие предварительного преобразования в изменение электрического тока и напряжения посредством специализированных датчиков:

  • фонокардиограмма (ФКГ), характеризующая акустические явления, возникающие при работе сердца;

  • спирограмма (СГ), отражающая динамику изменения скорости воздушного потока в дыхательных путях при вдохе и выдохе;

  • динамика дыхательного ритма - обычно измеряется при помощи пьезодатчиков по изменению длины нагрудных эластичных ремней;

  • пульсоксиметрия (ПО) фиксирует изменения насыщения крови кислородом по отраженному свету с использованием светочувствительных датчиков;

  • плетизмограмма – описывает изменение кровотока, регистрируемое фотодатчиками по отраженному от мелких сосудов свету.

Основные этапы компьютеризированного функционального исследования:

Первый этап – подготовительный, заключается в соответствующей подготовке пациента и аппаратуры: закреплении на теле пациента датчиков, подключении к биоусилителю, регистрации паспортных данных пациента и т.д.

Второй этап - планирование исследования: устанавливают частоту дискретизации, определяют число отведений, настраивают усилитель, выбирают интервал наблюдений (временной промежуток, в течение которого регистрируемые биосигналы заносятся в протокол исследования), назначают параметры экспресс-анализа данных (это вычисление некоторых характеристик изучаемого показателя непосредственно в процессе исследования). При выполнении типовых клинических исследований используются заранее созданные и сохраненные в памяти компьютера планы.

Третий этап – это собственно выполнение исследования. Во время регистрации изучаемых параметров можно наблюдать соответствующие графики на мониторе компьютера в реальном временном масштабе и вносить коррективы в процесс исследования. Результатом исследования в реальном времени является запись биосигналов за определенный промежуток времени. В дальнейшем эту запись можно просматривать и редактировать, например, удалять артефакты, выделять наиболее интересные существенные фрагменты записи и т.д.

Четвертый этап – это вычислительный анализ. Его методы и средства зависят от области исследования. В результате вычислительного анализа исследователь получает ряд интегральных или статистических величин, облегчающих и уточняющих трактовку результатов исследования.

Пятый этап – это компьютерная диагностика. Программное обеспечение ПКС может содержать специальные алгоритмы, позволяющие автоматизировать клиническую интерпретацию результатов исследования. Однако, следует помнить, что вычислительные машины на современном этапе не могут полностью решить эту проблему. Для корректного клинического заключения требуется не формализуемый профессиональный опыт врача.
1   2   3   4   5   6   7   8   9   10   11

Похожие:

Медицинская информатика iconПоложение об экзамене студентов Волггму, обучающихся по специальности...
Охватывают все разделы курса
Медицинская информатика iconИнформатика, медицинская информатика и статистика
Рабочая программа дисциплины составлена в соответствии с федеральным государственным образовательным стандартом высшего профессионального...
Медицинская информатика iconИнформатика, медицинская информатика и статистика
Рабочая программа дисциплины составлена в соответствии с федеральным государственным образовательным стандартом высшего профессионального...
Медицинская информатика iconВопросы на экзамен
Медицинская сортировка. Определения и виды Медицинская эвакуация. Путь, плечо, эваконаправление
Медицинская информатика iconДиплом о переподготовке
Медицинская сестра (палатная) хирургических, терапевтических отделений, Медицинская сестра поликлиник, цеховых врачебных участков...
Медицинская информатика iconМедицинская подготовка
М 545 Медицинская подготовка: методические указания к самостоятельной работе [Текст] / cост. О. В. Смирнова. – Красноярск: Сибирский...
Медицинская информатика iconПримерная программа медицинская информатика рекомендуется для специальности...
Цель – овладение студентом теорией основных понятий теоретическими основами медицинской информатики и практикой применения современных...
Медицинская информатика iconРоссийской Федерации Российский государственный медицинский университет...
Методическое пособие предназначено для преподавателей кафедры общей патологии мбф. Оно объединяет преподавание патофизиологии и патологической...
Медицинская информатика iconФедеральное агенство по здравоохранению и социальному развитию государственное...
Методические указания составлены в соответствии с требованиями Федерального государственного образовательного стандарта
Медицинская информатика iconРабочая программа По дисциплине «Общая и медицинская генетика» Для...
По Государственному образовательному стандарту высшего профессионального образования 315 часов
Медицинская информатика iconПервая медицинская помощь
Чтобы уметь правильно оказать доврачебную медицинскую помощь, студенты педвузов изучают дисциплину «Первая медицинская помощь»
Медицинская информатика iconПрограмма по формированию навыков безопасного поведения на дорогах...
Информатика” и, соответственно, одного предмета “Информатика и информационные и коммуникационные технологии”, далее “Информатика...
Медицинская информатика iconПрограмма по формированию навыков безопасного поведения на дорогах...
Информатика” и, соответственно, одного предмета “Информатика и информационные и коммуникационные технологии”, далее “Информатика...
Медицинская информатика iconПрограмма элективного курса «Медицинская география»
Программа составлена на основе программы курса «Медицинская география» для 11 класса медицинского профиля (авторы Т. В. Кучер и Т....
Медицинская информатика iconПрограмма элективного курса «Медицинская география»
Программа составлена на основе программы курса «Медицинская география» для 11 класса медицинского профиля (авторы Т. В. Кучер и Т....
Медицинская информатика iconПрограмма по формированию навыков безопасного поведения на дорогах...
Первая медицинская помощь при травмах. Первая медицинская помощь при остановке сердца


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск