Задача Лагранжа. Безусловный и условный экстремумы Задача Лагранжа с одним ограничением





Скачать 388.47 Kb.
НазваниеЗадача Лагранжа. Безусловный и условный экстремумы Задача Лагранжа с одним ограничением
страница7/7
Дата публикации27.02.2015
Размер388.47 Kb.
ТипЗадача
100-bal.ru > Математика > Задача
1   2   3   4   5   6   7

9. Взаимные экстремальные задачи



Задачу Лагранжа с одним ограничением можно было бы записать в следующей форме:

f(X) – c  max

при условии (41)

h(X) = r.

Вычитание константы с из целевой функции не изменяет положения оптимума. Лагранжиан этой задачи:

L(X; l) = f(X) - с - l[h(X) - r],

а условия оптимума имеют вид



Рассмотрим теперь задачу, в которой целевая и ограничивающая функции поменялись ролями:

h(X) – r  min

при условии (43)

f(X) = с.

Для новой задачи лагранжиан равен

L1(Х; ) = h(Х) - r - [f(X) - с],

а условие оптимальности –



Задачи (41) и (43) называют взаимными по отношению друг к другу. Если, например, исходная задача состояла в максимизации полезности некоторого набора продуктов при заданном ресурсном ограничении, то взаимная задача состоит в минимизации расхода ресурса при обеспечении заданного уровня полезности.

Сравнение равенств (42) и (43) показывает, что условия оптимальности у обеих задач одни и те же: достаточно положить  = 1/, чтобы в этом убедиться. Если l - предельная полезность ресурса, то  можно было бы назвать “предельной ресурсоемкостью полезности”.

10. Модель потребительского выбора



Перейдем к рассмотрению рационального потребительского выбора в пространстве благ с теми же отношениями предпочтения. Введем в рассмотрение функцию полезности u(Х), согласованную с предпочтениями данного потребителя: u(Х) > u(у) тогда и только тогда, когда Х  У. Функцию u(Х) будем считать непрерывно дифференцируемой.

При этих допущениях моделью потребительского оптимума служит задача Лагранжа

u(Х)  max

при условии

 рiхi = m,

где рi - цена i - го блага, а m - денежный доход потребителя. Условия оптимальности имеют вид



Введем для удобства обозначение и представим условия оптимальности в форме



Формально эта система похожа на систему (39), описывающую оптимальность в задаче о рационе Робинзона. Но здесь имеются и существенные отличия. Во-первых, теперь мы отказались от предположения о суммируемости полезностей различных благ, и ui, - не производные полезностей отдельных благ, а лишь частные производные общей функции полезности. Во-вторых, u(Х) - это не полезность в некоторой абсолютной количественной шкале, а лишь функция, согласованная с предпочтениями и отражающая только порядковые отношения. Тем не менее, перечень аналогичных свойств можно продолжить. Для любой пары благ (i, j) в точке оптимума должны выполняться соотношения



Отметим, что выражение в левой части — это норма замещения i-го блага j-м при постоянстве объемов всех остальных благ: в пределах поверхности безразличия должно выполняться равенство



то есть



Как мы уже выяснили, значение множителя Лагранжа должно выражать предельную полезность лимитирующего ресурса, в данном случае - денежного дохода (или, проще, - предельную полезность денег). Но поскольку значения функции u(Х) не являются абсолютными значениями полезности, постольку и полная полезность денег



имеет смысл лишь по отношению к выбранной шкале полезностей. То же относится и к предельной полезности денег.

Что произойдет, если функцию полезности u(Х) заменить равносильной ей функцией u*(Х)? Отношение предпочтения сохранится, если u*(Х) = (u(Х)), где (u) - монотонно возрастающая функция. Правило дифференцирования сложной функции позволяет утверждать, что



где '(u) - значение производной d (u)/du. Заметим, что множитель (u) является одним и тем же для всех благ. Поэтому условия оптимальности

ui(Х) = lpi

и

ui(Х) = l рi

определяют одно и то же положение потребительского оптимума в пространстве благ. Различаются лишь значения множителей Лагранжа:

l = j'(u) l (47)

К этому результату можно подойти с другой стороны. Задавшись некоторым значением m дохода, при использовании функций u(Х) и u*(Х) мы получим один и тот же оптимальный набор благ Х0 . Общая полезность денег в одной шкале примет значение U(m) = u(Х0), в другой . Таким образом, при любом уровне дохода

U'(m) = j(U(m)), (48)

то есть общие полезности дохода в разных шкалах связаны между собой точно так же, как и полезности наборов благ. А так как множитель Лагранжа в рассматриваемой задаче - это предельная полезность денежного дохода, то, применяя к равенству (48) правило дифференцирования сложной функции, мы снова придем к равенству (47).

Заметим, что оптимум потребителя не всегда может быть определен в рамках задачи Лагранжа. Множество допустимых решений ограничено не только бюджетом потребителя, но и условиями неотрицательности объемов благ:



Если на бюджетной поверхности норма замещения каких-либо двух благ всюду больше или всюду меньше отношения цен, то равенство (46) не может выполняться ни в одной точке. Задача не имеет внутреннего решения, а имеет угловое решение. В рамках задачи Лагранжа не могут быть описаны решения, которые лежат на границах области, определяемой неравенствами.

11. Лабораторные задачи



Задача 1: Некоторое торговое предприятие в течении промежутка времени Т собирается завести и реализовать некоторый товар R общим объёмом. Стоимость завоза одной партии равна Сs, а хранение обходится С1. Необходимо определить оптимальный размер поставки, чтобы суммарный, а так же количество поставок, интервал времени между поставками и минимальные суммарные издержки. Т.е. надо найти: qo, no, tso, Qo.


Вариант 1.

T = 24

R = 240000

Cs = 1000

C1 = 30

Вариант 2.

T = 12

R = 15000

Cs = 800

C1 = 60

Вариант 3.

T = 6

R = 9000

Cs = 450

C1 = 20

Вариант 4.

T = 12

R = 9000

Cs = 1200

C1 = 40

Вариант 5.

T = 8

R = 13000

Cs = 900

C1 = 46

Вариант 6.

T = 3

R = 5000

Cs = 300

C1 = 15

Вариант 7.

T = 12

R = 17000

Cs = 1400

C1 = 60

Вариант 8.

T = 6

R = 9000

Cs = 1300

C1 = 30

Вариант 9.

T = 24

R = 250000

Cs = 12000

C1 = 65

Вариант 10.

T = 12

R = 10000

Cs = 3000

C1 = 35

Задача 2: Торговое предприятие намерено завести и реализовать товар n видов объемами соответственно Rn. Весь объем складских помещений составляет V. Стоимость хранения одной единицы товара равна C1n. Расходы по завозу Csn. При этом каждая из n единиц занимает Vn метров. Найти оптимальные размеры поставок каждого из видов товара.



Вариант 1.

n = 2

R1 = 32000, R2 = 30000;

C11 = 9, C12 = 10;

Cs1 = 1100, Cs2 = 1350;

V1 = 2, V2 = 4;

V = 20000;

Вариант 2.

n = 4

R1 = 4000, R2 = 2000,

R3 = 5000, R4 = 5000;

C11 = 6, C12 = 7, C13 = 9,

C14= 12;

Cs1 = 1100, Cs2 = 1000,

Cs3 = 2000,

Cs4 = 3000;

V1 = 3, V2 = 5, V3 = 5, V3 = 8;

V = 24000;

Вариант 3.

n = 2

R1 = 3500, R2 = 19000;

C11 = 6, C12 = 5;

Cs1 = 1900, Cs2 = 1200;

V1 = 4, V2 = 5;

V = 25000;
Вариант 4.

n = 3

R1 = 4000, R2 = 2000,

R3 = 1000;

C11 = 8, C12 = 8, C13 = 9;

Cs1 = 200, Cs2 = 600, Cs3 = 200;

V1 = 2, V2 = 5, V3 = 3;

V = 9000;
Вариант 5.

n = 2

R1 = 4200, R2 = 2000;

C11 = 6, C12 = 8;

Cs1 = 1500, Cs2 = 1900;

V1 = 3, V2 = 6;

V = 15000;
Вариант 6.

n = 3

R1 = 24000, R2 = 19000,

R3 = 20000;

C11 = 6, C12 = 10, C13 = 10;

Cs1 = 1900, Cs2 = 2000,

Cs3 = 2000;

V1 = 7, V2 = 5, V3 = 5;

V = 30000;
Вариант 7.

n = 3

R1 = 32000, R2 = 5000,

R3 = 21000;

C11 = 8, C12 = 5, C13 = 10;

Cs1 = 1800, Cs2 = 990,

Cs3 = 1000;

V1 = 4, V2 = 2, V3 = 3;

V = 26000;
Вариант 8.

n = 2

R1 = 12500, R2 = 8200;

C11 = 3, C12 = 8;

Cs1 = 900, Cs2 = 1900;

V1 = 3, V2 = 5;

V = 15000;

Вариант 9.

n = 3

R1 = 32000, R2 = 44000,

R3 = 20000;

C11 = 8, C12 = 10, C13 = 15;

Cs1 = 1500, Cs2 = 1900,

Cs3 = 2500;

V1 = 4, V2 = 6, V3 = 8;

V = 20000;

Вариант 10.

n = 2

R1 = 26000, R2 = 17000;

C11 = 6, C12 = 3;

Cs1 = 2100, Cs2 = 1400;

V1 = 6, V2 = 4;

V = 23000.


Список использованной литературы





  1. В.И. Варфоломеев “Моделирование элементов экономических систем”. Москва 2000г.




  1. Бусленко Н.П. “Моделирование сложных систем” Москва, 1999г.




  1. У. Черчмен, Р. Акоф, Л. Артоф. “Введение в исследование операций”. Наука: Москва, 1968г.




  1. А. Будылин “Элементарные задачи”. Москва, 2002г.




  1. Ванько В.И., Ермошина О.В., Кувыркин Г.Н. Вариацинное “Исчисление и оптимальное управление”. Москва, 1999г.




  1. Ашманов С.А., Тимохов А.В. “Теория оптимизации в задачах и упражнениях”. Москва, 1991г.




  1. “Лабораторный практикум по методам оптимизации”. А.Г.Коваленко, И.А.Власова, А.Ф.Федечев.- Самара, 1998г.




1   2   3   4   5   6   7

Похожие:

Задача Лагранжа. Безусловный и условный экстремумы Задача Лагранжа с одним ограничением iconЗадача состоит в формулировании необходимых и достаточных условий...
Метод множителей Лагранжа для нахождения точек условного экстремума
Задача Лагранжа. Безусловный и условный экстремумы Задача Лагранжа с одним ограничением iconЗадача 1 22 Вариант 3 22 Задача 1 22 Вариант 4 23 Задача 1 23 Задача...
«Менеджмент». Дисциплина реализуется кафедрой экономики и управления. Дисциплина нацелена на формирование общекультурных компетенций...
Задача Лагранжа. Безусловный и условный экстремумы Задача Лагранжа с одним ограничением iconПо Физике Механика от Аристотеля до Ньютона 2000-01 уч год. Основная часть
По мере накопления знаний о мире задача их систематизации становилась всё более насущной. Эта задача была выполнена одним из величайших...
Задача Лагранжа. Безусловный и условный экстремумы Задача Лагранжа с одним ограничением icon8. Законы сохранения в механике (от X. Гюйгенса до Ж. Л. Лагранжа)
...
Задача Лагранжа. Безусловный и условный экстремумы Задача Лагранжа с одним ограничением iconПрограмма по формированию навыков безопасного поведения на дорогах...
...
Задача Лагранжа. Безусловный и условный экстремумы Задача Лагранжа с одним ограничением iconДоктор фаустус
Иными словами, посильна ли человеку моего склада эта задача, задача, на выполнение которой меня подвигло скорее сердце, нежели право...
Задача Лагранжа. Безусловный и условный экстремумы Задача Лагранжа с одним ограничением iconЗадача обучения математики
До недавнего времени считалось, что главная задача школы состоит в том, чтобы дать каждому школьнику общей среднее образование в...
Задача Лагранжа. Безусловный и условный экстремумы Задача Лагранжа с одним ограничением iconУрока: комбинированный. Задача урока
Задача урока: показать глубину трагедии русского народа, ввергнутого в братоубийственную войну, определить возможности выхода из...
Задача Лагранжа. Безусловный и условный экстремумы Задача Лагранжа с одним ограничением iconПрограмма по формированию навыков безопасного поведения на дорогах...
Сегодня мы познакомимся с ещё одним рассказом Николая Николаевича Носова «Федина задача»
Задача Лагранжа. Безусловный и условный экстремумы Задача Лагранжа с одним ограничением iconТема урока «Подобие треугольников. Решение практических задач» Дидактическая задача
Дидактическая задача: Формирование универсальный учебных действий в условии решения практических задач
Задача Лагранжа. Безусловный и условный экстремумы Задача Лагранжа с одним ограничением iconЗадача педагогов
Фармацевтический бизнес оказался одним из самых прибыльных. Очереди в поликлиники выстраиваются с самого утра. Всё это свидетельствует...
Задача Лагранжа. Безусловный и условный экстремумы Задача Лагранжа с одним ограничением iconУрок литературного чтения Тема: Н. Н. Носов. «Федина задача»
Н. Н. Носова «Федина задача», исследовать творчество Н. Н. Носова, совершенствовать навыки выразительного чтения; формировать умение...
Задача Лагранжа. Безусловный и условный экстремумы Задача Лагранжа с одним ограничением iconРеферат Задача иммунной системы состоит в том, чтобы поддержать наследственно...
Стресс-индуцированное подавление клеточных иммунных реакций. Роль нейроэндокринного контроля иммунной системы
Задача Лагранжа. Безусловный и условный экстремумы Задача Лагранжа с одним ограничением iconПриветствуют учителя, отвечают на организационные вопросы. С целью
Учебная задача: развитие речевых умений на основе творческого применения усвоенного ранее лексико-грамматического материала в новых...
Задача Лагранжа. Безусловный и условный экстремумы Задача Лагранжа с одним ограничением iconПрограмма по формированию навыков безопасного поведения на дорогах...
Для учителя: мультимедийный комплекс, презентация к уроку, карточки с числами, ребус со словом «Задача», таблица «Задача. Составные...
Задача Лагранжа. Безусловный и условный экстремумы Задача Лагранжа с одним ограничением iconПрограмма по формированию навыков безопасного поведения на дорогах...
И задача духовно- нравственного воспитания заключается в формировании такой личности. Поэтому задача учителя сверхсложная: он должен...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск