Задача состоит в формулировании необходимых и достаточных условий существования максимума и минимума функции, выборе метода нахожденя экстремумов и их полном математическом обосновании





НазваниеЗадача состоит в формулировании необходимых и достаточных условий существования максимума и минимума функции, выборе метода нахожденя экстремумов и их полном математическом обосновании
страница2/4
Дата публикации26.05.2015
Размер0.51 Mb.
ТипЗадача
100-bal.ru > Математика > Задача
1   2   3   4

  • пусть f(n)(x0),тогда в окрестности точки х0 f(x)>f(x0), т. е. в точке х0 – локальный минимум;

  • пусть f(n)(x0)>0,тогда f(x)>f(x0) ,т. е. в точке х0 локальный минимум. ч.т.д.

4.Экстремумы функций трех переменных.
4.1.Необходимые условия экстремума.
Пусть функция v=f(x,y,z) определена в области D и (x0,y0,z0) будет внутренней точкой этой области.

Говорят, что функция v=f(x,y,z) в точке (x0,y0,z0) имеет максимум (минимум), если её можно окружить такой окрестностью

(x0- ,x0+ , y0- ,y0+ ,z0- ,z0+ )

что бы для всех точек этой окрестности выполнялось неравенство

f(x,y,z)0,y0,z0)

(>)

Если эту окрестность взять настлько малой, что бы знак равенства был исключён, т. е. чтобы в каждой её точке, кроме самой точки (x0,y0,z0) выполнялось строгое неравенство

f(x,y,z)0,y0,z0)

(>)

то говорят, что в точке (x0,y0,z0) имеет место собственный максимум (минимум), в противном случае максимум (минимум) называют несобственным.

Для обозначения максимума и минимума (как и в случае одной переменной) употребляется общий термин – экстремум.

Предположим, что наша функция в некоторой точке (x0,y0,z0) имеет экстремум,

Покажем, что если в этой точке существуют (конечные) частные производные

fx’(x0,y0,z0), fy’(x0,y0,z0) ,fz’(x0,y0,z0)

то все эти частные производные равны нулю, так что обращение в нуль частных производныхпервого порядка является необходимым условием существования экстремума.

С этой целью положим y= y0,z= z0 сохраняя х переменным ; тогда у нас получится функция от одной переменной х :

v=f(x, y0,z0)

Так как мы предположили, что в точке (x0,y0,z0) существует экстремум (для определенности - пуcть это будет максимум), то, в частности, отсюда следует, что в некоторой окрестности (x0- ,x0+ ) точки x=x0, необходимо должно выполняться неравенство

f(x, y0,z0)0,y0,z0)

так что упомянутая выше функция одной переменной в точке будет иметь максимум, а отсюда по теореме Ферма следует, что

fx’(x0,y0,z0)=0

Таким образом можно показать, что в точке и остальные частные производные равны нулю.

Итак, «подозрительными» на экстремум являются те точки, в которых частные производные первого порядка все обращаются в нуль: их координаты можно найти, решив систему уравнений

fx’(x,y,z)=0

fy’(x,y,z)=0 (4.2)

fz’(x,y,z)=0

Как и в случае функции одной переменной, подобные точки называются стационарными.
4.2.Достаточное условие экстремума.
Как и в случае функции одной переменной, в стационарной точке вовсе не обеспечено наличие экстремума.Таким образом, встает вопрос об достаточных для существования (или отсутствия) экстремума в стационарной точке, то есть о том исследоовании, которому эта точка должна быть дополнительно подвергнута.

Предположим, что функция v=f(x,y,z) определена, непрерывна и имеет непрерывные частные производные первого и второго порядков в окрестности некоторой точки (x0,y0,z0), которая является стационарной, т.е. удовлетворяет условиям

fx’(x0,y0,z0)=0,fy’(x0,y0,z0)=0 ,fz’(x0,y0,z0)=0

Чтобы установить, действительно ли наша функция имеет в точке (x0,y0,z0) экстремум или нет, естественно обратимся к рассмотрению разности

= f(x,y,z)- f(x0,y0,z0)

Разложим ее по формуле Тейлора,

= { fx ’’ x12+fx ’’ x22+…+fx ’’ xn2+2fx1x2 ’’ x1 x2+ +2fx1x3 ’’ x1 x3+…+2fxn-1xn ’’ xn-1 xn}= fxixj ’’ xi xj

где x= xi-xi0 ; производные все вычеслены в некоторой точке

(x10+0 x1, x20+0 x2,…, xn0+0 xn) (0<0<1)

Введём и здесь значения

fxixj ’’ (x10,x20,…,xn0)=aik (i,k=1,2,…,n) (4.2)

так что

fxixj ’’ (x10+0 x1, x20+0 x2,…, xn0+0 xn)= aik+ ik

и

ik 0 при x1 0,…, xn 0 (4.3)

Теперь интеесующее нас выражение можно написать в виде:

= { aik xi xk+ ik xi xk} (4.4)

На первом месте в скобках здесь стоит второй дифференциал функции f в рассматриваемой точке : он представляет собой однородный одночлен второй степени или, как говорят, квадратичную форму от переменных x1,…, xn. От свойств этой квадратичной формы, как мы увидим, и зависит решение интересующего нас вопроса.

В высшей алгебре квадратичную форму

aik yi yk (aik = aki) (4.5)

от переменных y1,…,yn называют определенной положительно (отрицательно), если она имеет положительные (отрицательные) значения при всех значениях аргументов, не равных одновременно нулю.

Необходимое и достаточное условие для того, чтобы форма (4.5) была определенной и положительной принадлежит Сильвестеру (J.J.Sylvester). Оно выражается цепью неравенств:

a11 a12 a11 a12 a13

a11>0, a21 a22 , a21 a22 a23 >0,

a31 a32 a33

Так как определенная отрицательная форма с изменением знака всех её членов переходит в определенню положительную, и обратно, то отсюда легко найти и характеристику отицательной формы : она дается цепью неравенств, которая получается из написанной выше изменением смысла неравенств через одно (начиная с первого).
a11 a12 a11 a12 a13

a11>0, a21 a22 a21 a22 a23 >0

a31 a32 a33

Следовательно, чтобы исследовать точку М(x0,y0,z0) на экстремум , надо исследовать квадратичную форму ( 4.5).

Сформулируем полученный результат в виде теоремы.

Теорема : Пусть в некоторой области, содержащей точку М(x0,y0,z0), функция f(x,y,z) имеет непрерывные частные производные до второго порядка включительно; пусть кроме того, точка М(x0,y0,z0) является критической точкой функции f(x,y,z), т.е.

f(x0,y0,z0) f(x0,y0,z0) f(x0,y0,z0)

--------------- =0, ---------------=0, ---------------=0

x y z

Тогда при x=x0,y=y0,z=z0 :

  1. f(x,y,z) имеет максимум , если

2 f(x0,y0,z0) 2 f(x0,y0,z0) 2 f(x0,y0,z0) 2 f(x0,y0,z0) 2

---------------<0 , -------------------------------- - --------------- >0

x2 x2 y2 x y
2 f(x0,y0,z0) 2 f(x0,y0,z0) 2 f(x0,y0,z0) 2 f(x0,y0,z0) 2

--------------- -------------------------------- - --------------- --

x2 x2 z2 y z

2 f(x0,y0,z0) 2 f(x0,y0,z0) 2 f(x0,y0,z0)

-- --------------- -------------------------------- --

x y x y z2
2 f(x0,y0,z0) 2 f(x0,y0,z0)

-- --------------------------------- +

x z y z

2 f(x0,y0,z0) 2 f(x0,y0,z0) 2 f(x0,y0,z0)

+ --------------- -------------------------------- --

x z x y y z
2 f(x0,y0,z0) 2 f(x0,y0,z0)

-- ------------------------------- >0

x z y2


  1. f(x,y,z) имеет минимум, если


2 f(x0,y0,z0) 2 f(x0,y0,z0) 2 f(x0,y0,z0) 2 f(x0,y0,z0) 2

--------------->0 , -------------------------------- - --------------- >0

x2 x2 y2 x y
2 f(x0,y0,z0) 2 f(x0,y0,z0) 2 f(x0,y0,z0) 2 f(x0,y0,z0) 2

--------------- -------------------------------- - --------------- --

x2 x2 z2 y z

2 f(x0,y0,z0) 2 f(x0,y0,z0) 2 f(x0,y0,z0)

-- --------------- -------------------------------- --

x y x y z2
2 f(x0,y0,z0) 2 f(x0,y0,z0)

-- --------------------------------- +

x z y z

2 f(x0,y0,z0) 2 f(x0,y0,z0) 2 f(x0,y0,z0)

+ --------------- -------------------------------- --

x z x y y z
2 f(x0,y0,z0) 2 f(x0,y0,z0)

-- ------------------------------- >0

x z y2

3)если
2 f(x0,y0,z0) 2 f(x0,y0,z0) 2 f(x0,y0,z0) 2 f(x0,y0,z0) 2

--------------- -------------------------------- - --------------- --

x2 x2 z2 y z

2 f(x0,y0,z0) 2 f(x0,y0,z0) 2 f(x0,y0,z0)

-- --------------- -------------------------------- --

x y x y z2
2 f(x0,y0,z0) 2 f(x0,y0,z0)

-- --------------------------------- +

x z y z

2 f(x0,y0,z0) 2 f(x0,y0,z0) 2 f(x0,y0,z0)

+ --------------- -------------------------------- --

x z x y y z
2 f(x0,y0,z0) 2 f(x0,y0,z0)

-- ------------------------------- =0

x z y2

то экстремум может быть , а может и не быть (в этом случае требуется дальнейшее исследование )

4) во всех остальных случаях f(x,y,z) не имеет ни максимума , ни минимума.

5.Экстремумы функций многих переменных.
5.1.Необходимые условия экстремума.
Пусть функция u=f(x1,x2,…,xn) определена в области D и (x10,x20,…,xn0) будет внутренней точкой этой области.

Говорят, что функция u=f(x1,x2,…,xn) в точке (x10,x20,…,xn0) имеет максимум (минимум), если её можно окружить такой окрестностью

(x10 x10 x20 x20 xn0 xn0 )

что бы для всех точек этой окрестности выполнялось неравенство

f(x1,x2,…,xn)10,x20,…,xn0)

(>)

Если эту окрестность взять настлько малой, что бы знак равенства был исключён, т. е. чтобы в каждой её точке, кроме самой точки (x10,x20,…,xn0) выполнялось строгое неравенство

f(x1,x2,…,xn)10,x20,…,xn0)

(>)

то говорят, что в точке (x10,x20,…,xn0) имеет место собственный максимум (минимум), в противном случае максимум (минимум) называют несобственным.

Для обозначения максимума и минимума (как и в случае одной переменной) употребляется общий термин – экстремум.

Предположим, что наша функция в некоторой точке (x10,x20,…,xn0) имеет экстремум,

Покажем, что если в этой точке существуют (конечные) частные производные

fx1’(x10,x20,…,xn0) ,…, f ’xn(x10,x20,…,xn0)

то все эти частные производные равны нулю, так что обращение в нуль частных производныхпервого порядка является необходимым условием существования экстремума.

С этой целью положим x2=x20,…,xn= xn0 сохраняя x1 переменным ; тогда у нас получится функция от одной переменной x1 :

u=f(x1, x20,…,xn0)

Так как мы предположили, что в точке (x10,x20,…,xn0) существует экстремум (для определенности - пуcть это будет максимум), то, в частности, отсюда следует, что в некоторой окрестности(x10- , x10+ ) точки x1= x10, необходимо должно выполняться неравенство

f(x1, x20,…,xn0)< f(x10,x20,…,xn0)

так что упомянутая выше функция одной переменной в точке x1= =x10 будет иметь максимум, а отсюда по теореме Ферма следует, что

fx1’(x10,x20,…,xn0)=0

Таким образом можно показать, что в точке (x10,x20,…,xn0)

и остальные частные производные равны нулю.

Итак, «подозрительными» на экстремум являются те точки, в которых частные производные первого порядка все обращаются в нуль: их координаты можно найти, решив систему уравнений

fx1’(x10,x20,…,xn0)=0

……………………. (5.1)

f ’xn(x10,x20,…,xn0)=0

Как и в случае функции одной переменной, подобные точки называются стационарными.

Замечения :Необходимое условие существования экстремума в случае дифференцируемой функции кратко можно записать так :

d f(x1,x2,…,xn)=0

так как, если fx1’= fx2’=…= f ’xn , то каковы бы ни были dx1,dx2,…,dxn всегда

f(x1,x2 d,…,xn)= fx1’ dx1+ fx2’ dx2+…+ f ’xn dxn=0

И обратно : если в данной точке тождественно выполняется это условие, то ввиду произвольности dx1,dx2,…,dxn производные fx1’, fx2’,…, f ’xn порознь равны нулю.

Обычно, рассматриваемая функция f(x1,x2,…,xn) имеет (конечные) частные производные во всей области, и тогда точки, доставляющие функции экстреммы, следует искать лишь среди стационарных точек. Однако встречаются случаи, когда в отдельных точках некоторые частные производные имеют бесконечные значения или вовсе не существуют (в то время как остальные равны нулю). Подобные точки, собственно, тоже следует причислить к «подозрительным» по экстремуму, наряду со стационарными.

Иногда дается и не прибегая к достаточным условиям выяснить характер стационарной точки функции. Так, если из условия задачи непременно следует, что рассматриваемая функция имеет где-то максимум или минимум и при этом системе уравнений (5.1) удовлетворяет только одна точка, то ясно, что эта точка и будет искомой точкой экстремума функции.

Заметим, наконец, что точками экстремума непрерывной функции могут быть точки, в которых функция недифференцируема (им соответствуюя, например, острия поверхности – графика функции).
5.2.Достаточные условия экстремума.
Так же как и для функции одной переменной, необходимый признак экстремума в случае многих переменных не является достаточным. Это значит, что из равенства нулю частных производных в данной точке вовсе не следует, что этаточка обязательно является точкой эксремума.

Достаточные условия экстремума для функций нескольких переменных носит значительно более сложный характер, чем для функции одной переменной.

Пусть функция f(x1,x2,…,xn) определена, непрерывна и имеет непрерывные производные первого и второго порядковокрестности некоторой стационарной точки (x10,x20,…,xn0).Разлагая разность

= f(x1,x2,…,xn)-f(x10,x20,…,xn0)

по формyле Тейлора, получим

= { fx ’’ x12+fx ’’ x22+…+fx ’’ xn2+2fx1x2 ’’ x1 x2+ +2fx1x3 ’’ x1 x3+…+2fxn-1xn ’’ xn-1 xn}= fxixj ’’ xi xj

где x= xi-xi0 ; производные все вычеслены в некоторой точке

(x10+0 x1, x20+0 x2,…, xn0+0 xn) (0<0<1)

Введём и здесь значения

fxixj ’’ (x10,x20,…,xn0)=aik (i,k=1,2,…,n) (5.2)

так что

fxixj ’’ (x10+0 x1, x20+0 x2,…, xn0+0 xn)= aik+ ik

и

ik 0 при x1 0,…, xn 0 (5.3)

Теперь интеесующее нас выражение можно написать в виде:

= { aik xi xk+ ik xi xk} (5.4)

На первом месте в скобках здесь стоит второй дифференциал функции f в рассматриваемой точке : он представляет собой однородный одночлен второй степени или, как говорят, квадратичную форму от переменных x1,…, xn. От свойств этой квадратичной формы, как мы увидим, и зависит решение интересующего нас вопроса.

В высшей алгебре квадратичную форму

aik yi yk (aik = aki) (5.5)

от переменных y1,…,yn называют определенной положительно (отрицательно), если она имеет положительные (отрицательные) значения при всех значениях аргументов, не равных одновременно нулю.

Необходимое и достаточное условие для того, чтобы форма (5.5) была определенной и положительной принадлежит ,как было уже сказано выше , Сильвестеру (J.J.Sylvester). Оно выражается цепью неравенств:

a11 a12 a11 a12 a13 a11 a12… a1n

a11>0, a21 a22 , a21 a22 a23 >0,…, a21 a22… a2n

a31 a32 a33 …………………

an1 an2… ann

Так как определенная отрицательная форма с изменением знака всех её членов переходит в определенню положительную, и обратно, то отсюда легко найти и характеристику отицательной формы : она дается цепью неравенств, которая получается из написанной выше изменением смысла неравенств через одно (начиная с первого).

Пользуясь этими понятиями. Сформулируем достаточные для существования экстремума условия :

Если второй дифференциал,т. е. квадратичная форма

aik xi xk (5.6)

со значениями (5.2) коэффициентов – оказывается определенной положительной (отрицательной) формой, то в используемой точке (x10,x20,…, xn0) будет собственный минимум (максимум).

Для доказательства введем расстояние

= x12+…+ xn2

между точками (x10,x20,…,xn0) и (x1,x2,…,xn). Вынося в (5.5) за скобку и полагая

xi (i=1,2,…,n)
перепишем выражение для в виде

= { aik Ei Ek+ ik Ei Ek} (5.7)

Числа Ei зараз не обращаются в нуль, поэтому, если форма (5.7) – положительная, первая сумма в скобках в формуле (5.7) иммет всегда положительный знак. Больше того, так как

Ei=1 (5.8)

то найдется такое постоянное положительное число m, что при всех возможных значениях Ei будет

aik Ei Ek>m

Действительно, эта сумма представляет собой непрерывную функцию от аргументов Ei во всем пространстве,в частности же и в множестве М тех точек(E1,…, En), которые удовлетворяют соотношению (5.8) («сферическая поверхность»). Но множество это, как нетрудно видеть, замкнуто, т. е. содержит все свои точки сгущения ; а тогда, по теореме Вейерштрасса, названная сумма будет иметь в М наименьшее значение , необходимо положительное (как и все ее значения в М).

С другой стороны, ввиду (5.3) вторая сумма в (5.7) для достаточно малых ,очевидно, будет по абсолютной величине уже меньше m, так что вся скобка окажется положительной. Итак, в достаточно малой сфере, с центром в точке (x10,x20,…,xn0) разность будет положительна, откуда и явствует, что в названной точке функция f(x1,x2,…,xn) имеет собственный минимум.

Аналогично исчерпывается и случай, когда форма (5.6) будет определенной, но отрицательной.

Для того, чтобы квадратичная форма (5.6) была отрицательно определенной, необходимо и достаточно, чтобы

a11 a12 a11 a12 a13 a11 a12… a1n

a11<0, a21 a22 , a21 a22 a23 <0,…,(-1)n a21 a22… a2n

a31 a32 a33 …………………

an1 an2… ann
5.3.Метод вычисления критериев Сильвестера.
Применение критерия Сильвестера для определения экстремума функции многих переменных требует вычисления определителей порядка. Рассмотрим один из возможных методов диагонализации матриц и соответственно получения треугольных определителей.Метод основан на последовательном понижении порядка определителя. При этом :

1.На каждом этапе понижения порядка определителя, удобная для применения вычислительной техники.

2.Получаемые в результате диагональные элементыопределителей являются элементами критерия Сильвестера и позволяют, так сказать, в «ходе вычисления» вести контроль знакоопределенности квадратичной формы.

В основу алгоритма вычислений положины два свойства определителей.

1.Известно, что

a11 a12

a21 a22
Впредь замена любого определителя второго порядка элементом a11 назовем «сверткой» определителя.

2.Определитель порядка не изменится, если элементы какой-либо строки умножить (разделить) на какое-либо число, не равное нулю, и сложить (вычесть) с элементами другой строки.

Итак, рассмотрим определитель n-го порядка, составленный из вторых частных производных некоторой функции n– переменных f(x1,x2,…,xn).

Положим aik= fxixk ’’ .Имеем

a11 a12… a1n

………………… (5.9)

an1 an2… ann

Умножим в (5.9) элементы первой строки на a21/ a11 и вычтем их из элементов второй строки.

Умножим в (5.9) элементы первой строки на a31/ a11и вычтем их из элементов третьей строки. …

Умножим в (5.9) элементы первой строки на an1/ a11 и вычтем их из элементов последней строки.

Выполнив последовательно эти операции, получим

a11 a12 … a1n

0 a22- a12 a21/ a11… a2n -a1n an1/ a11

……………………………………………………… (5.10)

0 an2- a12 an1/ a11… ann- a1n an1/ a11
Умножим каждую строку в (5.10), начиная со второй на a11,при этом определитель (5.10) умножится на a11n-2

1

----------- (5.11)

a11n-2

где

a11 a22- a12 a21 a11 a23- a13 a21 … a11 a2n- a1n a21

a11 a32- a12 a31 a11 a33- a13 a31 … a11 a13n- a1n a31

………………………………………………… (5.12)

a11 an2- a12 an1 a11 an3- a13 an1 … a11 ann- a1n an1

Рассмотрим более внимательно элементы (5.12). Перепишем (5.12) в виде

a11 a12 … a1n-1

a21 a22 … a2n-1

………………… (5.13)

an-11 an-12… an-1n-1

Из сравнения (5.12) и(5.13) видно, что

a11 – есть свертка определителя a11 a12

a21 a22

a12 – есть свертка определителя a11 a13

a21 a23

…………………………………………………………..

a1n-1 – есть свертка определителя a11 a1n

a21 a2n

.

Таким образом, первая строка 1n-1 является сверткой элементов первых двух строк определителя n. Более наглядно это можно сфрмклировать так : последовательно каждый «прямоугольник» элементов первой и второй строк заменяется его сверткой ; причем первые элементы двух строк «участвуют» во всех прямоугольниках этих строк.

a11 a12 a13… a1n

a11 a12 a1n-1

a21 a22 a23… a2n

Аналогично вторая строка определителя n-1 является сверткой элементов первой и третьей строк исходного определителя.

a11 a12 a13… a1n

a21 a22 a2n-1

a31 a32 a33… a3n
Наконец для последней строки n-1 имеем

a11 a12 a13… a1n

an-1 1 an-1 2 an-1n-1

an1 an2 an3… ann
Если теперь применить те же опервции к определителю n-1, т. е. к (5.13), получим

1

a11n-3 (5.14)

где

a11 a12 … a1 n-2

a21 a22 … a2 n-2

……………………………..

an-2 1 an-2 2… an-2 n-2
а элементы aik являются сверткой соответствующих определителей – прямоугольников.

Очевидно, повторяя эту операцию n–1 раз, получим следующую формулу, предварительно введя более простые обозначения :

a11 = a1– левый угловой верхний элемент
a11 = a2 – левый угловой верхний элемент
a11 = a3 – левый угловой верхний элемент

…………………………………………
a11 = an – левый угловой верхний элемент.

С учетом этого
an

a1n-2 a2n-3… an-1 (5.15) n>2
Пример №1.
2 1 5 3

0 4 7 2 1 2*4-1*0 2*7-5*0 2*2-3*0 1 8 14 4

5 6 3 1 22 2*6-5*1 2*3-5*5 2*1-5*3 22 7 –19 -13

0 2 1 3 2*2-0*1 2*1-5*0 2*3-3*0 4 2 6
4 7 2

7 –19 –13 1 4*(-19)-7*7 4*(-13)-2*7 1 -72-49 -52-14

2 3 1 4 4*1-2*7 4*3-2*2 4 -10 8
1 -121 -66 1 -121 -66 1

4 -10 8 2 -5 4 2 (-121*4-66*5)= -121*2-33*5=

= -242 –165= -407
Пример №2.


  1. 0 2 1 5

  1. 4 1 3 6 1 3*4-0*0 3*1-2*0 3*3-0*1 3*6-5*0

  2. 2 3 5 1 33 3*2-5*0 3*3-5*2 3*5-5*1 3*1-5*5

  1. 3 4 0 6 3*3-2*0 3*4-2*2 3*0-2*1 3*6-2*5

1 2 3 4 5 3*2-1*0 3*3-1*2 3*4-1*1 3*5-1*5


12 3 9 18 -30 66 -264-108

1 6 –1 10 -22 1 69 -105 96-162

33 9 8 -2 8 33*122 66 78 120-108

6 7 11 10

-30 66 -372 30*105-66*69 30*66+69*372

1 69 -105 -66 1 -30*78-66*66 -30*12+66*372

33*122 66 78 12 33*122*(-30)
1 3150-4554 1980+25668 1 -1404 27648

33*122*(-30) -2340-4356 -360+24552 33*122*(-30) –6696 24192
-1404*24192+6696*27648 33965568-182476800-2654208

33*122*(-30) 33*122*30

31311360-182476800 15116544 15116544

33*122*30 33*122 3888
=3888
Вычесленные в порядке получения определителий n, n-1, …, 2 их верхние левые угловые элементы a1,a2,…,an являются критерием Сильвестера в части знаков, т.е.

sign a11=sign a1
sign a11=sign a2=sign a11 a12

a21 a22

…………………………….
a11… a1n

sign a11=sign an=sign ………..

an1… ann

По сути метод дает возможность вычисления определителей . Однако нас интересуют лишь знаки определителей.Это существенно упрощает задачу.

Рассмотрим функцию f(x1,x2,…,xn). имеющую экстремум,а именно максимум в точке М0(x10,x20,…,xn0).Это значит,что все коэффициенты a1, a2,…, an должны быть положительными. Поэтому процесс определения максимума функции в точке М0 заканчивается на любом этапе понижения определителя ,если после положительных a1, a2,…, ak коэффициент аk+1 стал отрицательным или нулевым.

Если же в точке М0 – минимум, то коффициенты a1, a2,…, an образуют знакочередующуюся последоватнльность, а именно

a1<0, a2>0, a3<0,…

Аналогично процесс прекращается, если нарушается эта знакопеременность.

Итак, общая схема выглядит следующим образом :

1.Определяются стационарные точки функции, в которых
f

xi i=1,2,3,….,n

2.Определяются коэффициенты аik в этих точках

2f

xi xr
3.Выясняем знак первого диагонального элемента а111

а) если а11>0, то все последующие элементы а23,…,аn должны быть положительными,если в точке М0 действительно максимум

б)если а11<0, то знаки последующих элементов а23,…,аn должны чередоваться, если в точке М0 действительно минимум.

4.При нарушении какой-либо из закономерностей в п.3 процесс прекращается и формулируется вывод о том,что в точке М0 экстремума нет.
Наконец отметим следующее важное обстоятельство. Так как коэффициенты аik являются частными производными второго порядка и для дифференцируемой функции с непрерывными 2f/ xi xr в соответствии с теоремой Шварца эти частные производные не зависят от порядка дифференцирования, то аik= аki. Это важное свойство приводит к тому, что матрица (аik) является симметрической вместе со своим определителем аik Покажем, что учет этого факта сокращант объем вычислений по крайней мере вдвое .

Во-первых, покажем, что определитель n-1 также остается симметрическим,т. е. применяется операция понижения порядка инварианта и сохраняет это свойство при переходе от n-1 к n и т.д.

Диагональные элементы любого определителя, очевидно, равны сами себе.

Рассмотрим произвольный элемент аik в определителе n-1, i=k, i,k=1,2,…,n-1.

аik= аik – а1 k а1i / а11 (*)

Если переставить индексы i,k ,то

aki= аki – а1 i а1k / а11 (**)

Сравнивая (*) и (**) видим, что из того, что аik= аki следует, что аik= аki. Этим доказано, что из того, что n- симметрический определитель, определитель n-1 также симметрический.Что это дает для вычисления n-1 ?

Пусть вычислена первая строка коэффициентов а1k (k=1,2,…,n-1) определителя n-1 , т.е.

а11, а12, а13,…, а1n-1

Теперь вычислим первый столбец , он имеет вид

а11

а21

а31

…..

аn-1 1

Но ввиду симметричности коэффициентов, этот столбец совпадает со строкой. Другими словами, сосчитав элементы первой строки, первый столбец уже считать нет необходимости, его нужно просто записать. Для наглядности запишем

a11 a12 … a1 n-1
a21 a22… a2 n-1
………………….
an1 an2… an-1 n-1

Вычислим теперь элементы второй строки, начиная с а22 ,т.е. а22, а23, а24,…, а2 n-1.Эта строка полностью совпадает со вторым столбцом, начиная с а22,т.е.

а22

а31

…..

аn-1 2
Итак, второй столбец автоматически заполняется элементами второй строки.Т.е. иммем

a11 a12 а13 … a1 n-1

a21 a22 а23 … a2 n-1

n-1= a31 a32 а33 … a3 n-1

…………………………..

an-1 1 an-1 2 an-1 3 … an-1 n-1
И т.д.

Общий вывод : необходимо расчитать лишь правую треугольную часть элементов. Нижняя же левая часть определителя заполняется автоматически. Формально ее можно вообще не заполнять, т.е. оставлять в виде

a11 a12 а13 … a1 n-1

a22 а23 … a2 n-1

n-1= а33 … a3 n-1 (5.16)

…………..

an-1 n-1
Отсюда для получения следующегоопределителя можно применить правило, условно назовем, треугольника.

a11= a11 a22- a122

a22= a11 a33- a132 и т.д.

Для недиагоналных элементов схема несколько сложнее

a12= a11 a23- a13 a12 a11 a12 а13

а23 и т.д.

Пример №3.

Исследовать на экстремум функцию z=x3+y3-3xy

1.Находим

z z

---- и ----

y x
z

---- = 3x2-3y

y

z

---- = 3y2-3x

x
2.Находим стационарные точки, решая систему
3x2-3y=0

3y2-3x=0
Получили две стационарные точкм (0;0) и (1;1).

3.Находим

2z 2z 2z

------- --------- --------

x2 y2 x y
2z 2z 2z

------- =6x --------- =6y -------- = -3

x2 y2 x y
4.Для точки (0;0) имеем

a11=0 a22=0 a12= a21= -3

Для точки (1;1) иммем

b11=6 b22=6 a12= a21= -3
5.Находим

a11 a12 0 -3

a21 a22 -3 0
b11 b12 6 -3

b21 b22 -3 6
Так как <0 , то в точке (0;0) экстремума нет.

Так как >0 и a11>0, то (1;1) – точка минимма функции, причем zmin = -1.
Пример №4.
Исследовать на экстремум функцию w=x2/3+y2/3+z2/3

Ищем критические точки

2 2 2

w`x= ------ w`y= --------- w`z= ----------

3 3 x 3 3 y 3 3 z
Эти частные производные не обращаются в нуль ни при каких значениях x, y, z; они не сужествуют (обращаются в бесконечность) в точке P0(0;0;0). Точка P0 лежит внутри области определения функции w, которая представляет совокупность всех точек (x;y;z) пространства. Поэтому P0 критическая точка.

Исследуя знак разности w(P)-w(P0)= x2/3+y2/3+z2/3 вблизи точки P0, убеждаемся, что при любых отличных от нуля значениях x,y,z она сохраняет положительный знак. Поэтому P0 есть точка минимума, wmin=w(P0)=0
5.4.Экстремумы на множествах.
Следует обратить внимание на то, что мы указали необходимые и достаточные условия экстремума функции лишь во внутренней точке области определения. Таким образом, при отыскании абсолютного максимума или минимума функции необходимо наряду с внутренними критическими точками функции исследовать также точки границы области определения, поскрльку максимальное или минимальное значение функция может принять в одной из таких граничных точек.

Пусть функция f дифференцируема на открытом ограниченом G и непрерывна на его замыкании G. Пусть требуется найти наибольшее и наименьшее значения функции на множестве G. Для этого можно, например, найти все стационарные точки функции f в G, вычислить в них значения функции и выбрать, если, конечно это возможно (а теоретически возможно это, например, когда число стационарных точек конечно), точки, в которых функция принимает наибольшее и наименьшее значения из всех значений в стационарных точках. После этого следует сравнивать эти значения со значениями, которые функция принимает на границе открытого множества G, например, найдя, если это удается сделать, наибольшее и наименьшее значения функции f на границе области G. Сравнив наибольшее и наименьшее значения в стационарных точках с наибольшим и наименьшим значениями на границе множества G, мы можем, очевидно, найти искомый максимум и минимум f на G.

В случае, когда G – плоская область и ее граница является кривой, заданной некоторым представлением x=x(t), y=y(t),
Методы, которые можно применять в многомерном случае для отыскания экстремальных точек на границе области будут рассмотрены позже (см. раздел, посвященный условному экстремуму).

Полезно лишь иметь ввиду, что при отыскании максимумов и минимумов часто наряду с формальной техникой, а иногда и вместо нее можно использовать некоторые простые соображения, связанные с природой задачи. Например, если рассматриваемая в Rn дифференцируемая функция по смыслу задачи должна иметь минимум и вместе с тем она не ограничена сверху, то при условии, что функция имеет единственную критическую точку, можно без дальнейшего исследования утверждать, что в этой точке она принимает минимальное знычение.

6.Условный экстремум.
6.1.Постановка вопроса.
Одним из наиболее ярких популярных достижений дифференциального исчисления являются предполагаемые им рецепты отыскания экстремумов функций. Необходимые условия и достаточные дифференциальные признаки экстремума, которые мы получили из формулы Тейлора, относятся, как уже отмечалось к внутренним экстремумам.

Иными словами, эти результаты применимы только к исследованию поведения функции Rn x f(x) R в окрестности точки тогда, когда аргумент может принимать любое значение из некоторой окрестности Rn в точки x0.

Часто возникает более сложная и с практической точки зрения даже более интересная ситуация,когда ищется экстремум функции при некоторых условиях, ограничивающих область измерения аргумента. Типичным примером может служить изопериметрическая задача, когда ищется тело, имеющее максимальный объем при условии, что ограничивающая его поверхность имеет заданную площадь. Чтобы получить доступную нам математичкую запись такой задачи, упростим постановку и будем считать, что задача состоит в том, чтобы среди прямоугольников, имеющих заданный периметр 2р, найти тот, который имеет наибольшую площадь . Обозначив через х и у длины сторон прымоугольника, запишем, что

(х,у)=х-у

х+у=р

Итак, надо найти экстремум функции (х,у) при условии, что переменные х,у связаны соотношением х+у=р. Таким образом, экстремум функции ищется только на множестве тех точек плоскости R2, которые удовлетворяют указанному соотношению. Эта конкретная задача, конечно, решается без труда : достаточно, записав, что у=р-х, подставить это выражение в формулу для (х,у) и найти обычными методами максимум функции х(р-х). Она нам была нужна лишь для постановки вопрса. В следующих пунктах мы рассмотрим общий случай решения подобных задач.
6.2.Понятие условного экстремума.
Пусть на открытом множестве G Rn заданы функции.

yi=fi(x) i=1,2,3,…,m (6.1)

x=(x1,x2,…,xn).Обозначим через Е множество точек x G , в которых все функции fi i=1,2,3,…,m обращаются в нуль:

E={x: fi(x)=0, i=1,2,3,…,m, x G} (6.2)

Уравнения

fi(x)=0, i=1,2,3,…,n (6.3)

будем называть уравнениями связи.

Определение : пусть на множестве G задана функция y=f0(x) .Тогда x(0) E называется точкой условного экстремума (принят также термин «относительный экстремум») функции f0(x) относительно (или при выполнении) уравнений связи (6.3) , если она является точкой обычного экстремума этой функции , рассмотриваемой только на множестве Е.

Иначе говоря , здесь значения функции f0(x) в точке x(0) сравниваются не со всеми ее значениями в достаточно малой окрестности этой точки , а только со значениями в точках , принадлежащих одновременно указанной достаточно малой окрестности и множеству Е. Как и в случае обычных экстремумов , можно , естественно , рассматривать точки просто условного экстремума и точки строго условного экстремума.

Будем предполагать , что

  1. все функции f0,f1,f2,…, fm непрерывно дифференцируемы в открытом множестве G ;

  2. в рассматриваемой точке x(0) векторы f1, f2,…, fm линейно независимы , т.е. ранг матрицы Якоби

fj j=1,2,…,m

xi i=1,2,…,n

равен m-числу ее строк (строки матрицы Якоби являются компонентами градиентов f1, f2,…, fm).

Это означает , что функции системы (6.1) независимы в некоторой окрестности точки x(0).Поскольку в n-мерном пространстве не может быть больше чем n линйено независимых векторов и ранг матрицы не может быть больше чиола столбцов , то из условия 2) следует ,что m
Согласно условию 2) в точке x(0) хотя бы один из определителей вида

(f1, f2,…, fm)

(xi1,xi2,…,xim)

отличен от нуля.Пусть для определенности в точке x(0).

(f1, f2,…, fm)

(xi1,xi2,…,xim) (6.4)

Тогда , в силу теоремы о неявных функциях , систему уравнений (6.3) в некоторой окрестности точки x(0)=(x1(0),x2(0),…,xn(0)) можно разрешить относительно переменных x1,x2,…,xm :

x1= 1( x1,x2,…,xm)

x2= 2( x1,x2,…,xm)

…………………… (6.5)

xm= m( x1,x2,…,xm)

Поставив значения x1,x2,…,xm, даваемые формулами (6.5) в y=f0(x), т.е. рассмотрев композицию функции f0 и 1, получили функцию

y= f0( 1( xm+1,…,xn),…, m( xm+1,…,xn), xm+1,…,xn)== =0( xm+1,…,xn) (6.6)
от n-m переменных xm+1,…,xn,определенную и непрерывно дифференцируемую в некоторой окрестности точки x(0)=(x1(0),x2(0),…,xn(0)) в (n-m)–мерном пространстве Rn-m.

Поскольку , согласно теореме о неявных функциях , условия (6.3) и (6.5) равносильны ,то справедливо следующее утверждение.

Точка x(0) является точкой (строгого) условного экстремума для функции g относительно уравнений связи (6.3) в том и только том случае , когда x(0) является точкой обычного (строгого) экстремума (6.6).

Если x(0)– точка обычного экстремума функции g, то она является стационарной точкой этой функции:

dg (x(0))=0 (6.7)

Напомним , что дифференциал – линейная однородная функция и его равенство нулю означает равенство нулю этой функции при любых значениях ее аргументов , в данном случае – при любых dxm+1, dxm+2,…, dxn.Это возможно ,очевидно , в том и только том случае , когда все коэффициенты при этих аргументах , т.е. производные g/ xm+k, k=1,2,…,n-m обращаются в нуль в точке x(0).Условие (6.7) необходимо для условного экстремума в точке x(0).

Таким образом , метод , основанный на решение системы уравнений (6.3) через элементарные функции часто невозможно или весьма затруднительно; поэтому желательно располагать методом , позволяющим найти условный экстремум не решая системы (6.3).Такой способ ,так называемый метод множетелей Лагранжа , изложен в следующем пункте .
6.3.Метод множетелей Лагранжа для нахождения точек условного экстремума.
В этом пункте будем предполагать , что все функции f0,f1,f2,…, fm непрерывно дифференцируемы в открытом множестве G.

Теорема 6.1 : пусть x(0)– точка условного экстремума функции f0 при выполнении уравнений связи (6.3).Тогда в этой точке градиенты f1, f2,…, fm линейно независимы , т.е. существуют такие не все равные нулю , числа 0, 1, 2,…, m что

0 f0+ 1f1+ 2f2+…+ mfm=0 (6.8)
Следствие : если в точке x(0) условного экстремума функции f0 относительно уравнений связи (6.3) градиенты f1, f2,…, fm линейно независимы , то ранг матрицы Якоби

fj j=1,2,…,m

xi i=1,2,…,n

равен m, то существуют такие 1,…, m , что в этой точке

f0+ i fj=0 (6.9)

т.е. f0 является линейной комбинацией градиентов f1, f2,…, fm.
В координатной форме это условие имеет вид : для любого i=1,2,…,n в точке x(0)

f0 fi

xi xi (6.10)

функция

F(x)==f0(x)+ jfj(x) (6.11)

где числа 1,…, m удовлетворяют условию(6.10), называется функцией Лагранжа рассматриваемой задачи , а сами числа 1,…, m – множителями Лагранжа.

Условие (6.10) означает , что если x(0) является точкой условного экстремума функции f0 относительно уравнений связи (6.3) , то она является стационарной точкой для функции Лагранжа , т.е.

F(x(0))

xi i=1,2,…,n (6.12)

Прежде , чем доказать теорему , разъясним ее смысл и покажем , как ее использовать для нахождения точек условного экстремума. Прежде всего обратим внимание на то , что у функции вида (6.11) при произвольных числах 1,…, m, каждая точка ее условного экстремума является и точкой условного экстремума исходной функции f0, и наоборот.Мы выбираем такие значения 1,…, m, чтобы выполнялись условия (6.10) , т.е. чтобы данная точка условного экстремума оказалась и стационарной точкой фуцнкции (6.9).

Для отыскания точек условного экстремума следует рассмотреть систему n+m уравнений (6.3) и (6.8) относительно неизвестных x1(0),x2(0),…,xn(0), 1,…, m и решить ее (если это возможно) , найдя x1(0),x2(0),…,xn(0) и по возможности исключив 1,…, m.Сформулированная теорема утверждает , что все точки условного экстремума будут находится среди найденных таким образом точек (x1(0),x2(0),…,xn(0)).Вопрос о том , какие же из них фактически будут точками условного экстремума , требует дополнительного исследования , об этом будет говориться в п.6.5

Доказательство теоремы . Докажем утверждение равносильное теореме : если в точке x(0)=(x1(0),x2(0),…,xn(0)), удовлетворяющей уравнениям связи

fk(x(0))=0 k=1,2,…,n (6.13)

градиенты f0, f1, f2,…, fm линейно независимы , то x(0) не является точкой условного экстремума.

Итак , пусть f0, f1, f2,…, fm линейно независимы и , следовательно , ранг матрицы Якоби fj/ xi j=1,2,…,m,i=1,2,…,n равен m+1.Тогда в матрице существует минор порядка m+1 не равный нулю.Для определенности будем считать , что он образован первыми m+1 столбцами , т.е.

(f0, f1, f2,…, fm)

(x1,x2,…,xm+1) x=x(0) (6.14)

Множество G–открыто , а поэтому существует такое 00>0, что при всех 0 0<0<00 , куб

Q n={x: xi-xi(0) <0,i=1,2,…,n}

лежит в G и , следовательно, на нем определены все функции f0, f1, f2,…, fm.

Зафиксируем xm+2= x(0)m+2,…, xn=xn(0) и введем обозначения

x*=(x1,x2,…,xm+1)

Q m+1={x*: xi-xi(0) <0,i=1,2,…,m+1}

Очевидно , функции fj(x1,x2,…,xm+1,x(0)m+2,…,xn(0)) j=1,2,…,m определены и непрерывно дифференцируемы всюду в Q m+1.Рассмотрим отображение Ф : Q m+1 Rm+1, задаваемое формулами

y1= f0(x1,x2,…,xm+1,x(0)m+2,…,xn(0))

y2= f1(x1,x2,…,xm+1,x(0)m+2,…,xn(0))

…………………………………… (6.15)

ym+1= fm(x1,x2,…,xm+1,x(0)m+2,…,xn(0))

В силу (6.15) для точки x*(0)=(x1(0),x2(0),…,xn(0)) имеем

(y1, y2,…, ym+1) (f0, f1, f2,…, fm)

(x1,x2,…,xm+1) x*= x*(0) (x1,x2,…,xm+1) x=x(0)

а в силу (6.13) Ф(x*(0))=(f0(x(0),0,…,0) .Поэтому (в силу теремы о локальной обратимости непрерывно дифференцируемого отображения в точке , в которой его якобиан не равен нулю , существует такое число
1   2   3   4

Похожие:

Задача состоит в формулировании необходимых и достаточных условий существования максимума и минимума функции, выборе метода нахожденя экстремумов и их полном математическом обосновании iconРешение (ỹ(t), (t)) “подозрительно” на то, что является элементом максимума
Принцип максимума является необходимым условием минимума в задаче оптимального управления. Ввиду сложности, мы не приводим его доказательство,...
Задача состоит в формулировании необходимых и достаточных условий существования максимума и минимума функции, выборе метода нахожденя экстремумов и их полном математическом обосновании iconРабочая программа индивидуальных и групповых занятий «Решение задач повышенной трудности»
Основная задача обучения математике в школе – обеспечить прочное и сознательное овладение учащимися системой математических знаний...
Задача состоит в формулировании необходимых и достаточных условий существования максимума и минимума функции, выборе метода нахожденя экстремумов и их полном математическом обосновании iconУрок изучения нового материала с использованием метода работы в группах
Цель урока: Создание условий для усвоения алгоритма исследования функции с помощью производной
Задача состоит в формулировании необходимых и достаточных условий существования максимума и минимума функции, выборе метода нахожденя экстремумов и их полном математическом обосновании iconПрограмма по формированию навыков безопасного поведения на дорогах...
Предел функции в точке. Предел последовательности. Общие свойства предела функции. Предел функции в точке по множеству. Необходимое...
Задача состоит в формулировании необходимых и достаточных условий существования максимума и минимума функции, выборе метода нахожденя экстремумов и их полном математическом обосновании iconРабочая программа дисциплины «Математика»
«Дифференциальные уравнения». Современный специалист должен обладать навыками математической формализации стоящих перед ним задач,...
Задача состоит в формулировании необходимых и достаточных условий существования максимума и минимума функции, выборе метода нахожденя экстремумов и их полном математическом обосновании iconРабочая программа дисциплины «Математика»
«Дифференциальные уравнения». Современный специалист должен обладать навыками математической формализации стоящих перед ним задач,...
Задача состоит в формулировании необходимых и достаточных условий существования максимума и минимума функции, выборе метода нахожденя экстремумов и их полном математическом обосновании icon1. Центральный банк, его правовое положение, задачи и функции
Важнейшей функцией Центрального банка является выработка общей кредитной политики. Его стратегическая задача создание условий для...
Задача состоит в формулировании необходимых и достаточных условий существования максимума и минимума функции, выборе метода нахожденя экстремумов и их полном математическом обосновании iconПрограмма по формированию навыков безопасного поведения на дорогах...
Деятельность выступает как необходимое условие развития у ребенка познавательных процессов. Значит, образовательная задача состоит...
Задача состоит в формулировании необходимых и достаточных условий существования максимума и минимума функции, выборе метода нахожденя экстремумов и их полном математическом обосновании iconРеферат На тему: «Кибераудирование / говорение на уроке французского языка»
Федеральный государственный образовательный стандарт (фгос) начального, основного и среднего общего образования знаменует собой переход...
Задача состоит в формулировании необходимых и достаточных условий существования максимума и минимума функции, выборе метода нахожденя экстремумов и их полном математическом обосновании iconЗадача распознавания образов символов состоит в определении (построении)...
Г-н Журден. Честное слово, я и не подозревал, что вот уже более сорока лет говорю прозой. Большое вам спасибо, что сказали
Задача состоит в формулировании необходимых и достаточных условий существования максимума и минимума функции, выборе метода нахожденя экстремумов и их полном математическом обосновании iconЗадача распознавания образов символов состоит в определении (построении)...
Г-н Журден. Честное слово, я и не подозревал, что вот уже более сорока лет говорю прозой. Большое вам спасибо, что сказали
Задача состоит в формулировании необходимых и достаточных условий существования максимума и минимума функции, выборе метода нахожденя экстремумов и их полном математическом обосновании icon1 Бакалавр готовится к следующим видам профессиональной деятельности...
Целью учебной дисциплины бз. Вр. 13 «Преступления против порядка управления» является формирование у бакалавров профессиональных...
Задача состоит в формулировании необходимых и достаточных условий существования максимума и минимума функции, выборе метода нахожденя экстремумов и их полном математическом обосновании iconОсновные дидактические единицы (разделы)
Целью изучения дисциплины «Иностранный язык» является формирование и развитие коммуникативных компетенций (говорение, письмо, чтение,...
Задача состоит в формулировании необходимых и достаточных условий существования максимума и минимума функции, выборе метода нахожденя экстремумов и их полном математическом обосновании iconЗадача обучения математики
До недавнего времени считалось, что главная задача школы состоит в том, чтобы дать каждому школьнику общей среднее образование в...
Задача состоит в формулировании необходимых и достаточных условий существования максимума и минимума функции, выборе метода нахожденя экстремумов и их полном математическом обосновании iconРабочая программа дисциплины (модуля) Конституционное право Направление...
Целью учебной дисциплины «Конституционное право» является формирование у студентов профессиональных компетенций, необходимых и достаточных...
Задача состоит в формулировании необходимых и достаточных условий существования максимума и минимума функции, выборе метода нахожденя экстремумов и их полном математическом обосновании iconОбобщенная теорема Фалеса
В этом учебном году на школьной олимпиаде по математике была предложена геометрическая задача, которая нам показалась очень сложной....


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск