Н. И. Константинова концепции современного





НазваниеН. И. Константинова концепции современного
страница5/17
Дата публикации04.11.2014
Размер2.03 Mb.
ТипУчебное пособие
100-bal.ru > Астрономия > Учебное пособие
1   2   3   4   5   6   7   8   9   ...   17

4.2.10. Создание квантовой механики.

Корпускулярно-волновой дуализм

Основанная на уравнениях Максвелла классическая теория излучения нагретых тел противоречила результатам экспериментов. Все попытки объяснить это с позиций классической физики оказались безуспешными.

Эти противоречия разрешил немецкий физик Макс Планк (1858–1947). В 1901 г. он высказал предположение, что энергия излучается малыми порциями – квантами, причем энергия каждого кванта пропорциональна частоте испускаемого излучения. Связывающий эти величины коэффициент пропорциональности ныне называется постоянной Планка. Только после этого удалось построить согласующуюся с опытными данными теорию излучения, которая устранила абсолютно неприемлемую гипотезу (известную как ультрафиолетовая катастрофа), согласно которой все тела должны излучать в коротковолновом диапазоне бесконечную энергию.

В 1911 г. Эрнст Резерфорд (1871–1937) предложил модель строения атома, который ранее считался мельчайшей неделимой частицей.

Квантовая теория вещества и излучения получила подтверждение в экспериментах, обнаруживших, что при облучении твердых тел светом из них выбиваются электроны. При этом оказалось, что энергия вылетающих электронов зависит от частоты падающего света, а не от его интенсивности. Эйнштейн объяснил этот так называемый фотоэффект на основе квантовой теории, доказав, что энергия, необходимая для освобождения электрона зависит от частоты света (светового кванта), поглощаемого веществом.

Было доказано, что свет может вести себя и как частица, и как волна, т.е. обладает дуализмом. Одним из доказательств этого свойства света является интерференция. Интерференция света – это физическое явление, при котором два луча света накладываются друг на друга. При этом на экране возникает картина чередующихся темных и светлых полос. Интерференционную картину можно рассчитывать на основе, как волновых свойств света, так и рассматривая свет как фотоны, т.е. как частицы. Из квантового описания следует, что в одних частях экрана (соответствующих светлым полосам) вероятность найти фотоны больше, а в других частях (темные полосы) – меньше.

Основная идея квантовой механики состоит в том, что в микромире определяющим является представление о вероятности событий. На микроскопическом уровне, (т.е. когда речь идет о фотонах или элементарных частицах вещества) мы не можем точно предсказать результат конкретного эксперимента (например, указать на экране точку, в которую должен попасть фотон). Все что мы можем сделать, – это лишь рассчитать вероятность различных исходов опыта. И только при наличии очень большого количества частиц наши предсказания хода эксперимента обретают необходимую точность. Эта очень глубокая мысль предполагает принципиальную ограниченность наших возможностей предсказывать развитие событий.

Ясность в эту специфическую особенность квантовой теории в 1927 г. внес немецкий физик Гейзенберг (1901–1976), автор знаменитого принципа неопределенности. Согласно этому принципу, невозможно одновременно осуществить точное измерение двух дополняющих друг друга характеристик частиц, например, ее скорости и координаты. Принцип Гейзенберга фундаментален и очень важен. Гейзенберг наглядно объяснял свой принцип на примере гипотетического микроскопа. Если бы мы захотели установить координату электрона, точное значение импульса которого уже известно, то для того, чтобы увидеть электрон и определить его положение, нам пришлось бы осветить его, т.е. направить на него пучок фотонов. Однако фотоны, сталкиваясь с электроном, передадут ему часть своей энергии и тем самым изменят его импульс на неопределенную величину. Таким образом мы измерим точную координату частицы, но ее импульс окажется неопределенным.

В дальнейшем был достигнут существенный прогресс в понимании природы частиц и широком приложении квантовой теории к различным областям физики. В результате синтеза квантовой теории и специальной теории относительности возникла квантовая электродинамика – теория электромагнитных взаимодействий, которая рассматривает процесс взаимодействия заряженных частиц как обмен фотонами.

Создание специальной теории относительности и квантовой теории – это два революционных переворота в физике начала XX в., которые в корне изменили наши представления о пространстве, времени, излучении и веществе.
4.2.11. Теория гравитационного поля Эйнштейна.

Общая теория относительности

В 1916 г. Эйнштейн опубликовал свою общую теорию относительности, совершив еще один переворот в физических представлениях, на сей раз о природе гравитационного взаимодействия. «Фундамент» этой теории был «заложен» в 1907 г., когда Эйнштейн сформулировал принцип эквивалентности. Поясним сущность этого принципа.

Термин «масса», относящийся ко второму закону Ньютона, имеет смысл инертной массы – меры сопротивления тела любому изменению состояния его движения. Но понятие «масса» в ньютоновском законе всемирного тяготения имеет другой смысл – это тяготеющая масса или гравитационная масса. Еще Галилей утверждал, что в гравитационном поле все тела, независимо от их массы, приобретают одинаковые ускорения. Отсюда вытекает равенство инертной и гравитационной масс. Сам факт их равенства и то, что все тела падают в гравитационном поле с одинаковым ускорением, называют иногда слабым принципом эквивалентности. Указанное свойство гравитационных полей дает возможность установить существенную аналогию между движением тел в гравитационном поле и движением тел, не находящихся в каком-либо внешнем поле, но рассматриваемых с точки зрения неинерциальной системы отсчета. Свойства движения в неинерциальной системе отсчета такие же, как и в инерциальной системе при наличии гравитационного поля. Другими словами, неинерциальная система отсчета эквивалентна некоторому гравитационному полю. Это обстоятельство называют принципом эквивалентности. Так, если вы находитесь в закрытой кабине лифта (пример Эйнштейна), то вы не в состоянии отличить влияние тяготения от эффектов ускоренного движения. В такой закрытой кабине невозможны никакие эксперименты, которые позволили бы вам отличить явления, связанные с тяготением, от явлений, характерных для ускоренного движения. Внутри небольшой замкнутой кабины эффект гравитации и ускоренного движения неразличимы.

Одно из следствий принципа эквивалентности – отклонение лучей света (фотонов) вблизи тяготеющих масс, а свет, испускаемый тяготеющей массой, должен испытывать красное смещение. Это было подтверждено экспериментально.

Другим ключевым моментом в общей теории относительности было понятие кривизны пространства-времени. Эйнштейн предположил, что в присутствии массивных тел должно искривляться все пространство-время, (а не только пространство) и что лучи света и частицы будут двигаться в пространстве времени самым коротким путем – по геодезическим линиям. (Геодезическая линия на сфере – это дуга). Иными словами, тяготение есть следствие геометрических свойств пространства-времени вблизи массивных тел. Чем массивнее тело и выше его плотность, тем больше оно искривляет окружающее его пространство-время, и тем большую силу притяжения испытывают соседние тела.

А. Уилер, американский физик-теоретик дал меткую характеристику общей теории относительности: «Вещество говорит пространству, как тому искривляться, а пространство говорит веществу, как тому двигаться». Общая теория относительности в корне изменила наши представления о пространстве, времени, о Вселенной. Она привела к отказу от какого бы то ни было центризма вообще. Метагалактика – или вся наша наблюдаемая астрономическая Вселенная как единое целое стала описываться однородной изотропной безграничной релятивисткой космологической моделью.
4.2.12. Космические модели Вселенной.

Третья естественнонаучная революция

Первой релятивисткой космологической моделью (модель Вселенной) была предложенная самим Эйнштейном. Это была стационарная конечная сферическая замкнутая модель. Затем российский физик, геофизик и космолог Александр Александрович Фридман (1888–1925) в 1922 г. нашел ряд решений для расширяющихся Вселенных, заполненных веществом. Три модели Вселенной Фридмана и поныне служат основой для самых современных космических построений. Фридман сделал два очень простых предположения: во-первых, Вселенная выглядит одинаково, в каком бы направлении мы ее не наблюдали (изотропность Вселенной), и, во-вторых, это утверждение должно оставаться справедливым и в том случае, если бы мы производили наблюдения из какого-нибудь другого места (однородность Вселенной). Эти два предположения составляют так называемый космологический принцип. Не прибегая ни к каким другим предположениям, Фридман показал, что Вселенная не должна быть статической.

Предположение об одинаковости Вселенной во всех направлениях на самом деле, конечно, неверно. Как мы знаем, другие звезды в нашей Галактике образуют четко выделяющуюся световую полосу, которая проходит через все небо – Млечный путь. Но если говорить о далеких галактиках, то их число во всех направлениях примерно одинаково. Следовательно, Вселенная действительно «примерно» одинакова во всех направлениях при наблюдении в масштабе, большем по сравнению с расстоянием между галактиками. Долгое время это было единственным обоснованием гипотезы Фридмана как «грубого» приближения к реальной Вселенной. Но потом выяснилось, что астрономические наблюдения, сделанные в XX в., согласуются с космологическими моделями Фридмана и свидетельствуют о том, что Вселенная расширяется из начальной сингулярности (т.е. из очень малого объема, где плотность материи бесконечна).

Эйнштейн сначала высказывал сомнения относительно теоретической обоснованности космологических моделей Фридмана, но вскоре признал необоснованность своих сомнений.

С другой стороны, американский астроном Хаббл (1889–1953) в 1929 г., сопоставляя наблюдаемое систематическое доплеровское «покраснение» далеких галактик по мере их удаления от нас, установил, что эти галактики равномерно удаляются от нашей Галактики и друг от друга, т.е. вся наша Метагалактика систематически равномерно расширяется. Напомним, что эффект Доплера – это увеличение длины волны света при движении источника этого света от наблюдателя (т.н. «красное смещение»).

Выяснилось, что нашу, в общем достаточно однородную и изотропную Метагалактику, которая равномерно расширяется действительно можно описывать соответствующей релятивисткой космологической моделью Фридмана

Обобщая сказанное, мы можем утверждать, что третья глобальная естественнонаучная революция радикально преобразила научную картину мира, изменив астрономию, космологию и физику и означала полный отказ от всякого центризма.

Если каждую из трех глобальных естественнонаучных революций назвать по имени ученых, завершавших эти революции, то последние две революции можно назвать ньютоновской и эйнштейновской.

Как устроена Вселенная? Как она «живет» и развивается? Конечна она или бесконечна? Возникла ли она какое-то время назад или существовала всегда? Будет ли она существовать вечно или когда-нибудь наступит ее конец?

Вот те ключевые вопросы, которые придают космологии необычайную привлекательность. По существу это фундаментальные вопросы естествознания.

Ньютон представлял Вселенную бесконечной. Его закон всемирного тяготения столкнулся с непреодолимой трудностью, когда речь зашла о Вселенной как о едином целом. Действительно, если бы звездная Вселенная обладала конечными размерами, в гравитационное взаимодействие (т.е. притяжение) вовлеклась бы каждая частица вещества, и Вселенная сколлапсировала бы в единую массу. Чтобы это преодолеть, Ньютон постулировал, что Вселенная бесконечна, так что силы тяготения в данной точке взаимно компенсируются, и нет общего центра, на который могло бы все падать.

Отметим в этой связи один очень важный факт: ночное небо темное. Почему? Вселенная не может представлять собой константное распределение звезд, бесконечных по возрасту и размерам. Действительно, если бы это было не так, то каждый взгляд наблюдателя встречал бы звезду, но небо-то – темное! Объяснение этого факта лежит в космологической модели расширяющейся Вселенной. Чем дальше находится галактика, тем с большей скоростью она удаляется от нас, и тем больше красное смещение линий ее спектра. А красное смещение излучения источника ослабляет его интенсивность. На определенном расстоянии красное смещение становится так велико, что мы уже не видим света источника. Согласно закону Хаббла (закон разбегания галактик) определенную границу имеет по крайней мере наблюдаемая часть Вселенной, т.е. красное смещение порождает космологический «горизонт», за который наш взгляд проникнуть уже не может. Так как след от объектов, лежащих за космологическим горизонтом, не доходит до нас, то нет никаких проблем и с темнотой ночного неба. Какой, казалось бы, простой вопрос, а ответ на него потребовал наших современных знаний о Вселенной.

Попытаемся ответить также на вопрос: существует ли центр Вселенной? На первый взгляд закон Хаббла гласит и том, что мы находимся в центре расширения мира, и все галактики во Вселенной удаляются от нас, т.е. мы как бы находимся в центре мира. Но есть и другой ответ на этот вопрос. Вселенная будет выглядеть одинаково во всех направлениях и в том случае, если смотреть на нее с какой-нибудь другой галактики (гипотеза однородности Вселенной Фридмана). В модели Фридмана все галактики удаляются друг от друга. На самом деле это следствие расширения Вселенной как единого целого. Для пояснения этого важного момента сравним модель Вселенной с воздушным шариком. Нанесем на надутый шарик точки (галактики) и будем его продолжать надувать. Расстояние между любыми двумя точками увеличивается, но ни одну из них нельзя назвать центром расширения. И еще: чем больше расстояние между точками, тем быстрее они удаляются друг от друга. Итак, опять модель Фридмана подсказала нам ответ на поставленный вопрос.

Несмотря на успех этой модели и на согласие ее предсказаний с наблюдениями Хаббла, работа Фридмана оставалась неизвестной на западе, и лишь в 1935 г. американцы Робертсон и Уолкер предложили сходные модели в связи с открытием Хаббла.

Существуют три разные модели Фридмана, для которых выполним космологический принцип. В первой модели Вселенная расширяется медленно для того, чтобы в силу гравитационного притяжения между различными галактиками расширение Вселенной замедлялось и в конце концов прекращалось. После этого Вселенная начинает сжиматься. В остальных моделях сжатия не происходит. В первой модели Фридмана пространство искривляется, замыкаясь на себя, как поверхность Земли. Поэтому размеры его конечны. Во второй же модели, в которой Вселенная расширяется бесконечно, пространство искривлено иначе – как поверхность седла, т.е. в этом случае пространство бесконечно. В третьей модели Фридмана пространство плоское и, значит, тоже бесконечное.

Но какая из моделей Фридмана подходит для нашей Вселенной? Перестанет ли Вселенная расширяться и начнет сжиматься, или же будет расширяться вечно? Чтобы ответить на эти вопросы, нужно знать нынешнюю скорость расширения Вселенной и ее среднюю плотность.

Имеющиеся данные на сегодняшний день говорят о том, что Вселенная, вероятно, будет расширяться вечно. Как говорит знаменитый английский физик-теоретик Стивен Хокинг, единственное в чем можно быть совершенно уверенным, так это в том, что если сжатие Вселенной все-таки произойдет, то никак не раньше, чем через десять тысяч миллионов лет, ибо, по крайней мере, столько времени она расширяется. Но это не должно нас слишком тревожить: к тому времени, если мы не переселимся за пределы Солнечной системы, человечества давно уже не будет – оно угаснет вместе с Солнцем.

Все варианты модели Фридмана имеют общее: в какой-то момент времени в прошлом (десять-двадцать миллиардов лет назад) расстояние между соседними галактиками должно было равняться нулю. В этот момент (называемый Большим взрывом) плотность Вселенной и кривизна пространства-времени должны были быть бесконечными. Поскольку математики не умеют обращаться с бесконечно большими величинами, это означает, что, согласно общей теории относительности во Вселенной должна быть точка, в которой сама эта теория неприменима. Такая точка называется особой или сингулярной. В этой точке наши теории неверны из-за бесконечной плотности материи и бесконечной кривизны пространства-времени. Следовательно, если перед Большим взрывом и происходили какие-то события, по ним нельзя было спрогнозировать будущее. Следовательно, те события, которые происходили до Большого взрыва, нужно исключить из модели и считать началом отсчета времени момент Большого взрыва.

Итак, если верна общая теория относительности, то Вселенная могла иметь сингулярную точку, Большой взрыв. Но вот следует ли из общей теории относительности, что у Вселенной должно быть начало времени? Ответ на этот вопрос был получен в 1965 г. английским математиком и физиком Роджером Пенроузом. Пенроуз показал, что когда звезда сжимается под действием собственных сил гравитации, она ограничивается областью, поверхность которой сжимается до нуля; то же самое происходит и с ее объемом. Возникает сингулярность в области пространства-времени, она называется черной дырой. Стивен Хокинг заметил, что если в теореме Пенроуза изменить направление времени на обратное, то эта теорема тоже будет верна. В итоге Хокингу и Пенроузу в 1970 г. удалось доказать, что сингулярная точка Большого взрыва должна существовать. Однако, в последние годы, с развитием квантовой теории гравитации, было показано, что эффект сингулярности может исчезнуть. Сейчас ведутся интенсивные работы в области квантовой гравитации, необходимые для соединения единой теории всего происходящего во Вселенной.
1   2   3   4   5   6   7   8   9   ...   17

Похожие:

Н. И. Константинова концепции современного iconН. И. Константинова концепции современного
К65 Концепция современного естествознания: Учебное пособие. – Новосибирск: нф рап, 2006
Н. И. Константинова концепции современного iconАннотация к рабочей программе учебной дисциплины «Концепции современного естествознания»
Дисциплина «Концепции современного естествознания» входит в цикл Математических и естественнонаучных дисциплин (Б. 2)
Н. И. Константинова концепции современного iconМетодическая разработка по дисциплине «Концепции современного естествознания»
Дисциплина «Концепции современного естествознания», согласно государственному образовательному стандарту, является обязательной для...
Н. И. Константинова концепции современного iconРабочая программа дисциплины концепции современного естествознания...
Рабочая программа учебной дисциплины «Концепции современного естествознания» подготовлена Голигузовым Д. В., к ф н., доцентом кафедры...
Н. И. Константинова концепции современного iconКонцепции Современного Естествознания Преподаватель Рыжиков В. Н....
Учебник: Биболетова М. З., Бабушис Е. Е., Снежко Н. Д. EnjoyEnglish» Учебник для 10 класса общеобразовательных учреждений, Обнинск:...
Н. И. Константинова концепции современного iconС. П. Филин Концепции современного естествознания: конспект лекций
Конспект лекций соответствует требованиям Государственного образовательного стандарта высшего профессионального образования РФ и...
Н. И. Константинова концепции современного iconУчебно-методический комплекс на модульной основе дисциплины «концепции...
Целью курса «Концепции современного естествознания» является обеспечение фундаментальности и целостности высшего образования, что,...
Н. И. Константинова концепции современного iconПрограмма дисциплины «Концепции современного естествознания»
Программа дисциплины «Концепции современного естествознания» разработана доцентом кафедры прикладной и медицинской физики, к ф м...
Н. И. Константинова концепции современного iconМетодические рекомендации к самостоятельной работе студентов по дисциплине...
Содержание внеаудиторной самостоятельной работы студентов по дисциплине «концепции современного естествознания» включает в себя различные...
Н. И. Константинова концепции современного iconМетодические рекомендации к самостоятельной работе студентов по дисциплине...
Содержание внеаудиторной самостоятельной работы студентов по дисциплине «концепции современного естествознания» включает в себя различные...
Н. И. Константинова концепции современного iconУчебно-методический комплекс по дисциплине Концепции современного...
Учебно-методический комплекс по дисциплине «Концепции современного естествознания» составлен в соответствии с требованиями Государственного...
Н. И. Константинова концепции современного iconРабочая программа составлена в соответствии с требованиями гос впо...
Дубов В. П. Концепции современного естествознания. Учебно-методический комплекс. Рабочая программа для студентов специальности 032001....
Н. И. Константинова концепции современного iconПояснительная записка требования гос к уровню знаний, умений и навыков,...
Т. В. Сазанова. Концепции современного естествознания: Учебно-методический комплекс. Рабочая программа для студентов озо специальности...
Н. И. Константинова концепции современного iconКонцепции современного естествознания глава 12. Онтогенетический...
Дубнищева т. Я концепции современного естествознания глава 12. Онтогенетический уровень организации жизни. Концепции эволюционной...
Н. И. Константинова концепции современного iconПрограмма дисциплины Концепции современного естествознания  для...
Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и студентов направления подготовки бакалавра...
Н. И. Константинова концепции современного iconПрограмма дисциплины концепции современного естествознания
Поэтому студентам, изучающим юридические науки необходимо иметь ясные представления о методах естественнонаучного познания, знать...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск