Учебно-методический комплекс дисциплины Разработчики: Леонидов Д. В., Леонова А. А. Идентификационный номер





НазваниеУчебно-методический комплекс дисциплины Разработчики: Леонидов Д. В., Леонова А. А. Идентификационный номер
страница6/18
Дата публикации27.03.2015
Размер2.64 Mb.
ТипУчебно-методический комплекс
100-bal.ru > Философия > Учебно-методический комплекс
1   2   3   4   5   6   7   8   9   ...   18
мысленный эксперимент. В таком эксперименте исследователь мысленно создает идеальные объекты, соотносит их друг с другом в рамках определенной динамической модели, имитируя мысленно то движение, и те ситуации, которые могли бы иметь место в реальном эксперименте. При этом идеальные модели и объекты помогают выявить «в чистом виде» наиболее важные, существенные связи и отношения, мысленно проиграть возможные ситуации, отсеять ненужные варианты.

Моделирование служит также способом конструирования нового, не существующего ранее в практике. Исследователь, изучив характерные черты реальных процессов и их тенденции, ищет на основе ведущей идеи их новые сочетания, делает их мысленное переконструирование, то есть моделирует требуемое состояние изучаемой системы (так же, как любой человек и даже животное, строит свою деятельность, активность на основе формируемой первоначально «модели потребного будущего» – по Н.А. Бернштейну. При этом создаются модели-гипотезы, вскрывающие механизмы связи между компонентами изучаемого, которые затем проверяются на практике. В этом понимании моделирование в последнее время широко распространилось в общественных и гуманитарных науках – в экономике, педагогике и т.д., когда разными авторами предлагаются различные модели фирм, производств, образовательных систем и т.д.

Наряду с операциями логического мышления к теоретическим методам-операциям можно отнести также (возможно условно) воображение как мыслительный процесс по созданию новых представлений и образов с его специфическими формами фантазии (создание неправдоподобных, парадоксальных образов и понятий) и мечты (как создание образов желанного).

Теоретические методы (методы – познавательные действия).Общефилософским, общенаучным методом познания является диалектика – реальная логика содержательного творческого мышления, отражающая объективную диалектику самой действительности. Основой диалектики как метода научного познания является восхождение от абстрактного к конкретному (Г. Гегель) – от общих и бедных содержанием форм к расчлененным и более богатым содержанием, к системе понятий, позволяющих постичь предмет в его сущностных характеристиках. В диалектике все проблемы обретают исторический характер, исследование развития объекта является стратегической платформой познания. Наконец, диалектика ориентируется в познании на раскрытие и способы разрешения противоречий.

Законы диалектики: переход количественных изменений в качественные, единство и борьба противоположностей и др.; анализ парных диалектических категорий: историческое и логическое, явление и сущность, общее (всеобщее) и единичное и др. являются неотъемлемыми компонентами любого грамотно построенного научного исследования.

Научные теории, проверенные практикой: любая такая теория, по существу, выступает в функции метода при построении новых теорий в данной или даже в других областях научного знания, а также в функции метода, определяющего содержание и последовательность экспериментальной деятельности исследователя. Поэтому различие между научной теорией как формой научного знания и как метода познания в данном случае носит функциональный характер: формируясь в качестве теоретического результата прошлого исследования, метод выступает как исходный пункт и условие последующих исследований.

Доказательство–метод – теоретическое (логическое) действие, в процессе которого истинность какой-либо мысли обосновывается с помощью других мыслей. Всякое доказательство состоит из трех частей: тезиса, доводов (аргументов) и демонстрации. По способу ведения доказательства бывают прямые и косвенные, по форме умозаключения – индуктивными и дедуктивными. Правила доказательств:

1. Тезис и аргументы должны быть ясными и точно определенными.

2. Тезис должен оставаться тождественным на протяжении всего доказательства.

3. Тезис не должен содержать в себе логическое противоречие.

4. Доводы, приводимые в подтверждение тезиса, сами должны быть истинными, не подлежащими сомнению, не должны противоречить друг другу и являться достаточным основанием для данного тезиса.

5. Доказательство должно быть полным.

В совокупности методов научного познания важное место принадлежит методу анализа систем знаний. Любая научная система знаний обладает определенной самостоятельностью по отношению к отражаемой предметной области. Кроме того, знания в таких системах выражаются при помощи языка, свойства которого оказывают влияние на отношение систем знаний к изучаемым объектам – например, если какую-либо достаточно развитую психологическую, социологическую, педагогическую концепцию перевести на, допустим, английский, немецкий, французский языки – будет ли она однозначно воспринята и понята в Англии, Германии и Франции? Далее, использование языка как носителя понятий в таких системах предполагает ту или иную логическую систематизацию и логически организованное употребление языковых единиц для выражения знания. И, наконец, ни одна система знаний не исчерпывает всего содержания изучаемого объекта. В ней всегда получает описание и объяснение только определенная, исторически конкретная часть такого содержания.

Метод анализа научных систем знаний играет важную роль в эмпирических и теоретических исследовательских задачах: при выборе исходной теории, гипотезы для разрешения избранной проблемы; при разграничении эмпирических и теоретических знаний, полуэмпирических и теоретических решений научной проблемы; при обосновании эквивалентности или приоритетности применения тех или иных математических аппаратов в различных теориях, относящихся к одной и той же предметной области; при изучении возможностей распространения ранее сформулированных теорий, концепций, принципов и т.д. на новые предметные области; обосновании новых возможностей практического приложения систем знаний; при упрощении и уточнении систем знаний для обучения, популяризации; для согласования с другими системами знаний и т.д.

Далее, к теоретическим методам-действиям будут относиться два метода построения научных теорий:

дедуктивный метод (синоним – аксиоматический метод) – способ построения научной теории, при котором в ее основу кладутся некоторые исходные положения аксиомы (синоним – постулаты), из которых все остальные положения данной теории (теоремы) выводятся чисто логическим путем посредством доказательства. Построение теории на основе аксиоматического метода обычно называют дедуктивным. Все понятия дедуктивной теории, кроме фиксированного числа первоначальных (такими первоначальными понятиями в геометрии, например, являются: точка, прямая, плоскость) вводятся посредством определений, выражающих их через ранее введенные или выведенные понятия. Классическим примером дедуктивной теории является геометрия Евклида. Дедуктивным методом строятся теории в математике, математической логике, теоретической физике;

– второй метод в литературе не получил названия, но он безусловно существует, поскольку во всех остальных науках, кроме вышеперечисленных, теории строятся по методу, который назовем индуктивно-дедуктивным: сначала накапливается эмпирический базис, на основе которого строятся теоретические обобщения (индукция), которые могут выстраиваться в несколько уровней – например, эмпирические законы и теоретические законы – а затем эти полученные обобщения могут быть распространены на все объекты и явления, охватываемые данной теорией (дедукция). Индуктивно-дедуктивным методом строится большинство теорий в науках о природе, обществе и человеке: физика, химия, биология, геология, география, психология, педагогика и т.д.

Другие теоретические методы исследования (в смысле методов – познавательных действий): выявления и разрешения противоречий, постановки проблемы, построения гипотез и т.д. вплоть до планирования научного исследования мы будем рассматривать ниже в конкретике временной структуры исследовательской деятельности – построения фаз, стадий и этапов научного исследования.

Эмпирические методы (методы-операции).

Изучение литературы, документов и результатов деятельности. Вопросы работы с научной литературой будут рассмотрены ниже отдельно, поскольку это не только метод исследования, но и обязательный процессуальный компонент любой научной работы.

Источником фактического материала для исследования служит также разнообразная документация: архивные материалы в исторических исследованиях; документация предприятий, организаций и учреждений в экономических, социологических, педагогических и других исследованиях и т.д. Изучение результатов деятельности играет важную роль в педагогике, особенно при изучении проблем профессиональной подготовки учащихся и студентов; в психологии, педагогике и социологии труда; а, например, в археологии при проведении раскопок анализ результатов деятельности людей: по остаткам орудий труда, посуды, жилищ и т.д. позволяет восстановить образ их жизни в ту или иную эпоху.

Наблюдение – в принципе, наиболее информативный метод исследования. Это единственный метод, который позволяет увидеть все стороны изучаемых явлений и процессов, доступные восприятию наблюдателя – как непосредственному, так и с помощью различных приборов.

В зависимости от целей, которые преследуются в процессе наблюдения, последнее может быть научным и ненаучным. Целенаправленное и организованное восприятие объектов и явлений внешнего мира, связанное с решением определенной научной проблемы или задачи, принято называть научнымнаблюдением. Научные наблюдения предполагают получение определенной информации для дальнейшего теоретического осмысления и истолкования, для утверждения или опровержения какой-либо гипотезы и пр.

Научное наблюдение складывается из следующих процедур:

- определение цели наблюдения (для чего, с какой целью?);

- выбор объекта, процесса, ситуации (что наблюдать?);

- выбор способа и частоты наблюдений (как наблюдать?);

- выбор способов регистрации наблюдаемого объекта, явления (как фиксировать полученную информацию?);

- обработка и интерпретация полученной информации (каков результат?).

Наблюдаемые ситуации подразделяются на:

- естественные и искусственные;

- управляемые и не управляемые субъектом наблюдения;

- спонтанные и организованные;

- стандартные и нестандартные;

- нормальные и экстремальные и т.д.

Кроме того, в зависимости от организации наблюдения оно может быть открытым и скрытым, полевым и лабораторным, а в зависимости от характера фиксации – констатирующим, оценивающим и смешанным. По способу получения информации наблюдения подразделяются на непосредственные и инструментальные. По объему охвата изучаемых объектов различают сплошные и выборочные наблюдения; по частоте – постоянные, периодические и однократные. Частным случаем наблюдения является самонаблюдение, достаточно широко используемое, например, в психологии.

Наблюдение необходимо для научного познания, поскольку без него наука не смогла бы получить исходную информацию, не обладала бы научными фактами и эмпирическими данными, следовательно, невозможно было бы и теоретическое построение знания.

Однако наблюдение как метод познания обладает рядом существенных недостатков. Личные особенности исследователя, его интересы, наконец, его психологическое состояние могут значительно повлиять на результаты наблюдения. Еще в большей степени подвержены искажению объективные результаты наблюдения в тех случаях, когда исследователь ориентирован на получение определенного результата, на подтверждение существующей у него гипотезы.

Для получения объективных результатов наблюдения необходимо соблюдать требования интерсубъективности, то есть данные наблюдения должны (и/или могут) быть получены и зафиксированы по возможности другими наблюдателями.

Замена прямого наблюдения приборами неограниченно расширяет возможности наблюдения, но также не исключает субъективности; оценка и интерпретация подобного косвенного наблюдения осуществляется субъектом, и поэтому субъектное влияние исследователя все равно может иметь место.

Наблюдение чаще всего сопровождается другим эмпирическим методом – измерением

Измерение. Измерение используется повсеместно, в любой человеческой деятельности. Так, практически каждый человек в течение суток десятки раз проводит измерения, смотря на часы. Общее определение измерения таково: «Измерение – это познавательный процесс, заключающийся в сравнении ... данной величины с некоторым ее значением, принятым за эталон сравнения».

В том числе, измерение является эмпирическим методом (методом-операцией) научного исследования.

Можно выделить определенную структуру измерения, включающую следующие элементы:

1) познающий субъект, осуществляющий измерение с определенными познавательными целями;

2) средства измерения, среди которых могут быть как приборы и инструменты, сконструированные человеком, так и предметы и процессы, данные природой;

3) объект измерения, то есть измеряемая величина или свойство, к которому применима процедура сравнения;

4) способ или метод измерения, который представляет собой совокупность практических действий, операций, выполняемых с помощью измерительных приборов, и включает в себя также определенные логические и вычислительные процедуры;

5) результат измерения, который представляет собой именованное число, выражаемое с помощью соответствующих наименований или знаков.

Гносеологическое обоснование метода измерения неразрывно связано с научным пониманием соотношения качественных и количественных характеристик изучаемого объекта (явления). Хотя при помощи этого метода фиксируются только количественные характеристики, эти характеристики неразрывно связаны с качественной определенностью изучаемого объекта. Именно благодаря качественной определенности можно выделить количественные характеристики, подлежащие измерению. Единство качественной и количественной сторон изучаемого объекта означает как относительную самостоятельность этих сторон, так и их глубокую взаимосвязь. Относительная самостоятельность количественных характеристик позволяет изучить их в процессе измерения, а результаты измерения использовать для анализа качественных сторон объекта.

Проблема точности измерения также относится к гносеологическим основаниям измерения как метода эмпирического познания. Точность измерения зависит от соотношения объективных и субъективных факторов в процессе измерения.

К числу таких объективных факторов относятся:

– возможности выделения в изучаемом объекте тех или иных устойчивых количественных характеристик, что во многих случаях исследования, в частности, социальных и гуманитарных явлений и процессов затруднено, а, подчас, вообще невозможно;

– возможности измерительных средств (степень их совершенства) и условия, в которых происходит процесс измерения. В ряде случаев отыскание точного значения величины принципиально невозможно. Невозможно, например, определить траекторию электрона в атоме и т.д.

К субъективным факторам измерения относятся выбор способов измерения, организация этого процесса и целый комплекс познавательных возможностей субъекта – от квалификации экспериментатора до его умения правильно и грамотно истолковывать полученные результаты.

Наряду с прямыми измерениями в процессе научного экспериментирования широко применяется метод косвенного измерения. При косвенном измерении искомая величина определяется на основании прямых измерений других величин, связанных с первой функциональной зависимостью. По измеренным значениям массы и объема тела определяется его плотность; удельное сопротивление проводника может быть найдено по измеренным величинам сопротивления, длины и площади поперечного сечения проводника и т.д. Особенно велика роль косвенных измерений в тех случаях, когда прямое измерение в условиях объективной реальности невозможно. Например, масса любого космического объекта (естественного) определяется при помощи математических расчетов, основанных на использовании данных измерения других физических величин.

Особого внимания заслуживает разговор о шкалах измерения.

Шкала – числовая система, в которой отношения между различными свойствами изучаемых явлений, процессов переведены в свойства того или иного множества, как правило – множества чисел.

Различают несколько типов шкал. Во-первых, можно выделить дискретные шкалы (в которых множество возможных значений оцениваемой величины конечно – например, оценка в баллах – «1», «2», «3», «4», «5») и непрерывные шкалы (например, масса в граммах или объем в литрах). Во-вторых, выделяют шкалы отношений, интервальные шкалы,порядковые(ранговые) шкалы и номинальные шкалы (шкалы наименований) –– то есть, их «разрешающая способность». Мощность шкалы можно определить как степень, уровень ее возможностей для точного описания явлений, событий, то есть, той информации, которую несут оценки в соответствующей шкале. Например, состояние пациента может оцениваться в шкале наименований: «здоров» – «болен». Бóльшую информацию будут нести измерения состояния того же пациента в шкале интервалов или отношений: температура, артериальное давление и т.д. Всегда можно перейти от более мощной шкалы к более «слабой» (произведя агрегирование – сжатие – информации): например, если ввести «пороговую температуру» в 370 С и считать, что пациент здоров, если его температура меньше пороговой и болен в противном случае, то можно от шкалы отношений перейти к шкале наименований. Обратный переход в рассматриваемом примере невозможен – информация о том, что пациент здоров (то есть, что его температура меньше пороговой) не позволяет точно сказать, какова его температура.

Рассмотрим, следуя в основном свойства четырех основных типов шкал, перечисляя их в порядке убывания мощности.

Шкала отношений – самая мощная шкала. Она позволяет оценивать, во сколько раз один измеряемый объект больше (меньше) другого объекта, принимаемого за эталон, единицу. Для шкал отношений существует естественное начало отсчета (нуль). Шкалами отношений измеряются почти все физические величины – линейные размеры, площади, объемы, сила тока, мощность и т.д.

Все измерения производятся с той или иной точностью. Точность измерения – степень близости результата измерения к истинному значению измеряемой величины. Точность измерения характеризуется ошибкой измерения – разностью между измеренным и истинным значением.

Различают систематические (постоянные) ошибки (погрешности), обусловленные факторами, действующими одинаково при повторении измерений, например – неисправностью измерительного прибора, и случайные ошибки, вызванные вариациями условий измерений и/или пороговой точностью используемых инструментов измерений (например, приборов).

Из теории вероятностей известно, что при достаточно большом числе измерений случайная погрешность измерения может быть:

- больше средней квадратической ошибки(обозначаемой обычно греческой буквой сигма и равной корню квадратному из дисперсии) примерно в 32 % случаев. Соответственно, истинное значение измеряемой величины находится в интервале среднее значение плюс/минус средняя квадратическая ошибка с вероятностью 68 %;

- больше удвоенной средней квадратической ошибки только в 5 % случаев. Соответственно, истинное значение измеряемой величины находится в интервале среднее значение плюс/минус удвоенная средняя квадратическая ошибка с вероятностью 95 %;

- больше утроенной средней квадратической ошибки лишь в 0,3 % случаев. Соответственно, истинное значение измеряемой величины находится в интервале среднее значение плюс/минус утроенная средняя квадратическая ошибка с вероятностью 99,7 %

Следовательно, крайне маловероятно, чтобы случайная погрешность измерения получилась больше утроенной средней квадратической ошибки. Поэтому в качестве диапазона «истинного» значения измеряемой величины обычно выбирают среднее арифметическое значение плюс/минус утроенная среднеквадратическая ошибка (так называемое «правило трех сигма»).

Шкала интервалов применяется достаточно редко и характеризуется тем, что для нее не существует естественного начала отсчета. Примером шкалы интервалов является шкала температур по Цельсию, Реомюру или Фаренгейту. Шкала Цельсия, как известно, была установлена следующим образом: за ноль была принята точка замерзания воды, за 100 градусов – точка ее кипения, и, соответственно, интервал температур между замерзанием и кипением воды поделен на 100 равных частей. Здесь уже утверждение, что температура 300С в три раза больше, чем 100С, будет неверным. В шкале интервалов сохраняется отношение длин интервалов (разностей). Можно сказать: температура в 300С отличается от температуры в 200С в два раза сильнее, чем температура в 150С отличается от температуры в 100С.

Порядковая шкала (шкала рангов) – шкала, относительно значений которой уже нельзя говорить ни о том, во сколько раз измеряемая величина больше (меньше) другой, ни на сколько она больше (меньше). Такая шкала только упорядочивает объекты, приписывая им те или иные баллы (результатом измерений является просто упорядочение объектов).

Например, так построена шкала твердости минералов Мооса: взят набор 10 эталонных минералов для определения относительной твердости методом царапанья. За 1 принят тальк, за 2 – гипс, за 3 – кальцит и так далее до 10 – алмаз. Любому минералу соответственно однозначно может быть приписана определенная твердость. Если исследуемый минерал, допустим, царапает кварц (7), но не царапает топаз (8), то соответственно его твердость будет равна 7. Аналогично построены шкалы силы ветра Бофорта и землетрясений Рихтера.

Шкалы порядка широко используются в социологии, педагогике, психологии, медицине и других науках, не столь точных, как, скажем, физика и химия. В частности, повсеместно распространенная шкала школьных отметок в баллах (пятибалльная, двенадцатибалльная и т.д.) может быть отнесена к шкале порядка.

Частным случаем порядковой шкалы является дихотомическая шкала, в которой имеются всего две упорядоченные градации – например, «поступил в институт», «не поступил».

Шкала наименований (номинальная шкала) фактически уже не связана с понятием «величина» и используется только с целью отличить один объект от другого: телефонные номера, номера госрегистрации автомобилей и т.п.

Результаты измерений необходимо анализировать, а для этого нередко приходится строить на их основании производные (вторичные) показатели, то есть, применять к экспериментальным данным то или иное преобразование. Самым распространенным производным показателем является усреднение величин – например, средний вес людей, средний рост, средний доход на душу населения и т.п. Использование той или иной шкалы измерений определяет множество преобразований, которые допустимы для результатов измерений в этой шкале.

Начнем с наиболее слабой шкалы – шкалы наименований (номинальной шкалы), которая выделяет попарно различимые классы объектов. Например, в шкале наименований измеряются значения признака «пол»: «мужской» и «женский». Эти классы будут различимы независимо от того, какие различные термины или знаки для их обозначений будут использованы: «особи женского пола» и «особи мужского пола», или «female» и «male», или «А» и «Б», или «1» и «2», или «2» и «3» и т.д. Следовательно, для шкалы наименований применимы любые взаимно-однозначные преобразования, то есть сохраняющие четкую различимость объектов (таким образом, самая слабая шкала – шкала наименований – допускает самый широкий диапазон преобразований).

Отличие порядковой шкалы (шкалы рангов) от шкалы наименований заключается в том, что в шкале рангов классы (группы) объектов упорядочены. Поэтому произвольным образом изменять значения признаков нельзя – должна сохраняться упорядоченность объектов (порядок следования одних объектов за другими). Следовательно, для порядковой шкалы допустимым является любое монотонное преобразование. Например, если оценка объекта А – 5 баллов, а объекта Б – 4 балла, то их упорядочение не изменится, если мы число баллов умножим на одинаковое для всех объектов положительное число, или сложим с некоторым одинаковым для всех числом, или возведем в квадрат и т.д. (например, вместо «1», «2», «3», «4», «5» используем соответственно «3», «5», «9», «17», «102»). При этом изменятся разности и отношения «баллов», но упорядочение сохранится.

Для шкалы интервалов допустимо уже не любое монотонное преобразование, а только такое, которое сохраняет отношение разностей оценок, то есть линейное преобразование – умножение на положительное число и/или добавление постоянного числа. Например, если к значению температуры в градусах Цельсия добавить 2730С, то получим температуру по Кельвину, причем разности любых двух температур в обеих шкалах будут одинаковы.

И, наконец, в наиболее мощной шкале – шкале отношений – возможны лишь только преобразования подобия – умножения на положительное число. Содержательно это означает, что, например, отношение масс двух предметов не зависит от того, в каких единицах измерены массы – граммах, килограммах, фунтах и т.д.

Как отмечалось выше, результаты любых измерений относятся, как правило, к одному из основных (перечисленных выше) типов шкал. Однако получение результатов измерений не является самоцелью – эти результаты необходимо анализировать, а для этого нередко приходится строить на их основании производные показатели. Эти производные показатели могут измеряться в других шкалах, нежели чем исходные. Например, можно для оценки знаний применять 100-балльную шкалу. Но она слишком детальна, и ее можно при необходимости перестроить в пятибалльную («1» – от «1» до «20»; «2» – от «21» до «40» и т.д.), или двухбалльную (например, положительная оценка – все, что выше 40 баллов, отрицательная – 40 и меньше). Следовательно, возникает проблема – какие преобразования можно применять к тем или иным типам исходных данных. Другими словами, переход от какой шкалы к какой является корректным. Эта проблема в теории измерений получила название проблемы адекватности.

Для решения проблемы адекватности можно воспользоваться свойствами взаимосвязи шкал и допустимых для них преобразований, так как отнюдь не любая операция при обработке исходных данных является допустимой. Так, например, такая распространенная операция, как вычисление среднего арифметического, не может быть использована, если измерения получены в порядковой шкале. Общий вывод таков – всегда возможен переход от более мощной шкалы к менее мощной, но не наоборот (например, на основании оценок, полученных в шкале отношений, можно строить балльные оценки в порядковой шкале, но не наоборот).

Завершив описание такого эмпирического метода, как измерение, вернемся к рассмотрению других эмпирических методов научного исследования.

Опрос. Этот эмпирический метод применяется только в общественных и гуманитарных науках. Метод опроса подразделяется на устный опрос и письменный опрос.

Устный опрос (беседа, интервью). Суть метода понятна из его названия. Во время опроса у спрашивающего налицо личный контакт с отвечающим, то есть он имеет возможность видеть, как отвечающий реагирует на тот или другой вопрос. Наблюдатель может в случае надобности задавать различные дополнительные вопросы и таким образом получать дополнительные данные по некоторым неосвещенным вопросам.

Устные опросы дают конкретные результаты, и с их помощью можно получить исчерпывающие ответы на сложные вопросы, интересующие исследователя. Однако на вопросы «щекотливого» характера опрашиваемые отвечают письменно гораздо откровеннее и ответы при этом дают более подробные и основательные.

На устный ответ отвечающий затрачивает меньше времени и энергии, чем на письменный. Однако такой метод имеет и свои отрицательные стороны. Все отвечающие находятся в неодинаковых условиях, некоторые из них могут получить через наводящие вопросы исследователя добавочную информацию; выражение лица или какой-либо жест исследователя оказывает некоторое воздействие на отвечающего.

Вопросы, используемые для интервью, заблаговременно планируются и составляется вопросник, где должно быть оставлено место и для записи (протоколирования) ответа.

Основные требования при составлении вопросов:

1) опрос не должен носить случайный характер, а быть планомерным; при этом более понятные отвечающему вопросы задаются раньше, более трудные – позднее;

2) вопросы должны быть лаконичными, конкретными и понятными для всех отвечающих;

3) вопросы не должны противоречить этическим нормам.

Правила проведения опроса:

1) во время интервью исследователь должен быть с отвечающим наедине, без посторонних свидетелей;

2) каждый устный вопрос прочитывается с вопросного листа (вопросника) дословно, в неизменном виде;

3) точно придерживается порядок следования вопросов; отвечающий не должен видеть вопросника или иметь возможность прочитать следующие за очередным вопросы;

4) интервью должно быть кратковременным – от 15 до 30 минут в зависимости от возраста и интеллектуального уровня опрашиваемых;

5) интервьюирующий не должен воздействовать на отвечающего каким-либо способом (косвенно подсказывать ответ, качать головой в знак неодобрения, кивать головой и т.д.);

6) интервьюирующий может в случае надобности, если данный ответ неясен, задавать дополнительно лишь нейтральные вопросы (например: «Что Вы хотели этим сказать?», «Объясните немного подробнее!»).

7) ответы записываются в вопросник только во время опроса.

В дальнейшем ответы анализируются и интерпретируются.

Письменный опрос – анкетирование. В его основе лежит заранее разработанный вопросник (анкета), а ответы респондентов (опрашиваемых) на все позиции вопросника составляют искомую эмпирическую информацию.

Качество эмпирической информации, получаемой в результате анкетирования, зависит от таких факторов, как формулировка вопросов анкеты, которые должны быть понятны опрашиваемому; квалификация, опыт, добросовестность, психологические особенности исследователей; ситуация опроса, его условия; эмоциональное состояние опрашиваемых; обычаи и традиции, представления, житейская ситуация; а также – отношение к опросу. Поэтому, используя такую информацию, всегда необходимо делать поправку на неизбежность субъективных искажений вследствие специфического индивидуального «преломления» ее в сознании опрашиваемых. А там, где речь идет о принципиально важных вопросах, наряду с опросом обращаются и к другим методам – наблюдению, экспертным оценкам, анализу документов.

Особое внимание уделяется разработке вопросника – анкеты, содержащей серию вопросов, необходимых для получения информации в соответствии с целями и гипотезой исследования. Анкета должна отвечать следующим требованиям: быть обоснованной относительно целей ее использования, то есть обеспечивать получение искомой информации; иметь устойчивые критерии и надежные шкалы оценок, адекватно отражающие изучаемую ситуацию; формулировка вопросов должна быть понятна опрашиваемому и непротиворечива; вопросы анкеты не должны вызывать отрицательных эмоций у респондента (отвечающего).

Вопросы могут носить закрытую или открытую форму. Закрытым называется вопрос, если на него в анкете приводится полный набор вариантов ответов. Опрашиваемый только отмечает тот вариант, который совпадает с его мнением. Такая форма анкеты значительно сокращает время заполнения и делает одновременно анкету пригодной для обработки на компьютере. Но иногда есть необходимость узнать непосредственно мнение опрашиваемого по вопросу, исключающему заранее подготовленные варианты ответов. В этом случае прибегают к открытым вопросам.

Отвечая на открытый вопрос, отвечающий руководствуется только собственными представлениями. Следовательно, такой ответ более индивидуализирован.

Повышению достоверности ответов способствует и соблюдение ряда других требований. Одно из них состоит в том, чтобы респонденту была обеспечена возможность уклониться от ответа, выразить неопределенное мнение. Для этого шкала оценок должна предусматривать варианты ответов: «трудно сказать», «затрудняюсь ответить», «бывает по-разному», «когда как», и т.п. Но преобладание в ответах таких вариантов является свидетельством либо некомпетентности респондента, либо непригодности формулировки вопроса для получения нужной информации.

Для того чтобы получить достоверные сведения об исследуемом явлении, процессе, не обязательно опрашивать весь контингент, так как объект исследования может быть численно очень большим. В тех случаях, когда объект исследования превышает несколько сот человек, применяется выборочное анкетирование.

Метод экспертных оценок. По существу, это разновидность опроса, связанная с привлечением к оценке изучаемых явлений, процессов наиболее компетентных людей, мнения которых, дополняющие и перепроверяющие друг друга, позволяют достаточно объективно оценить исследуемое. Использование этого метода требует ряда условий. Прежде всего – это тщательный подбор экспертов – людей, хорошо знающих оцениваемую область, изучаемый объект и способных к объективной, непредвзятой оценке.

Существенное значение имеет также выбор точной и удобной системы оценок и соответствующих шкал измерения, что упорядочивает суждения и дает возможность выразить их в определенных величинах.

Зачастую бывает необходимо обучить экспертов пользоваться предложенными шкалами для однозначной оценки, чтобы свести к минимуму ошибки, сделать оценки сопоставимыми.

Если действующие независимо друг от друга эксперты стабильно дают совпадающие или близкие оценки или высказывают близкие мнения, есть основания полагать, что они приближаются к объективным. Если же оценки сильно расходятся, то это говорит либо о неудачном выборе системы оценок и шкал измерения, либо о некомпетентности экспертов.

Разновидностями метода экспертных оценок являются: метод комиссий, метод мозгового штурма, метод Делфи, метод эвристического прогнозирования и др. Ряд этих методов будет рассмотрен в третьей главе настоящей работы.

Тестирование – эмпирический метод, диагностическая процедура, заключающаяся в применении тестов (от английского test – задача, проба). Тесты обычно задаются испытуемым либо в виде перечня вопросов, требующих кратких и однозначных ответов, либо в виде задач, решение которых не занимает много времени и также требует однозначных решений, либо в виде каких-либо краткосрочных практических работ испытуемых, например квалификационных пробных работ в профессиональном образовании, в экономике труда и т.п. Тесты различаются на бланочные, аппаратурные (например, на компьютере) и практические; для индивидуального применения и группового.

Вот, пожалуй, и все эмпирические методы-операции, которыми располагает на сегодняшний день научное сообщество. Далее мы рассмотрим эмпирические методы-действия, которые строятся на использовании методов-операций и их сочетаний.

Эмпирические методы (методы-действия).

Эмпирические методы-действия следует, прежде всего, подразделить на два класса. Первый класс – это методы изучения объекта без его преобразования, когда исследователь не вносит каких-либо изменений, преобразований в объект исследования. Точнее говоря, не вносит существенных изменений в объект – ведь, согласно принципу дополнительности (см. выше) исследователь (наблюдатель) не может не менять объект. Назовем их методами отслеживания объекта. К ним относятся: собственно метод отслеживания и его частные проявления – обследование, мониторинг, изучение и обобщение опыта.

Другой класс методов связан с активным преобразованием исследователем изучаемого объекта – назовем эти методы преобразующими методами – в этот класс войдут такие методы, как опытная работа и эксперимент.

Отслеживание, зачастую, в ряде наук является, пожалуй, единственным эмпирическим методом-действием. Например, в астрономии. Ведь астрономы никак не могут пока влиять на изучаемые космические объекты. Единственная возможность – отслеживать их состояние посредством методов-операций: наблюдения и измерения. То же, в значительной мере, относится и к таким отраслям научного знания как география, демография и т.д., где исследователь не может что-либо изменять в объекте исследования.

Кроме того, отслеживание применяется и тогда, когда ставится цель изучения естественного функционирования объекта. Например, при изучении тех или иных особенностей радиоактивных излучений или при изучении надежности технических устройств, которая проверяется их длительной эксплуатацией.

Обследование – как частный случай метода отслеживания – это изучение исследуемого объекта с той или иной мерой глубины и детализации в зависимости от поставленных исследователем задач. Синонимом слова «обследование» является «осмотр», что говорит о том, что обследование – это в основном первоначальное изучение объекта, проводимое для ознакомления с его состоянием, функциями, структурой и т.д. Обследования чаще всего применяются по отношению к организационным структурам – предприятиям, учреждениям и т.п. – или по отношению к общественным образованиям, например, населенным пунктам, для которых обследования могут быть внешними и внутренними.

Внешние обследования: обследование социокультурной и экономической ситуации в регионе, обследование рынка товаров и услуг и рынка труда, обследование состояния занятости населения и т.д. Внутренние обследования: обследования внутри предприятия, учреждения – обследование состояния производственного процесса, обследования контингента работающих и т.д.

Обследование проводится посредством методов-операций эмпирического исследования: наблюдения, изучения и анализа документации, устного и письменного опроса, привлечения экспертов и т.д.

Любое обследование проводится по заранее разработанной подробной программе, в которой детально планируется содержание работы, ее инструментарий (составление анкет, комплектов тестов, вопросников, перечня подлежащих изучению документов и т.д.), а также критерии оценки подлежащих изучению явлений и процессов. Затем следуют этапы: сбора информации, обобщения материалов, подведения итогов и оформления отчетных материалов. На каждом этапе может возникнуть необходимость корректировки программы обследования, когда исследователь или группа исследователей, проводящих его, убеждаются, что собранных данных не хватает для получения искомых результатов, или собранные данные не отражают картину изучаемого объекта и т.д.

По степени глубины, детализации и систематизации обследования подразделяют на:

– пилотажные (разведывательные) обследования, проводимые для предварительной, относительно поверхностной ориентировки в изучаемом объекте;

– специализированные (частичные) обследования, проводимые для изучения отдельных аспектов, сторон изучаемого объекта;

– модульные (комплексные) обследования – для изучения целых блоков, комплексов вопросов, программируемых исследователем на основании достаточно подробного предварительного изучения объекта, его структуры, функций и т.д.;

– системные обследования – проводимые уже как полноценные самостоятельные исследования на основе вычленения и формулирования их предмета, цели, гипотезы и т.д., и предполагающие целостное рассмотрение объекта, его системообразующих факторов.

На каком уровне проводить обследование в каждом конкретном случае решает сам исследователь или исследовательский коллектив в зависимости от поставленных целей и задач научной работы.

Мониторинг. Это постоянный надзор, регулярное отслеживание состояния объекта, значений отдельных его параметров с целью изучения динамики происходящих процессов, прогнозирования тех или иных событий, а также предотвращения нежелательных явлений. Например, экологический мониторинг, синоптический мониторинг и т.д.

Изучение и обобщение опыта(деятельности). При проведении исследований изучение и обобщение опыта (организационного, производственного, технологического, медицинского, педагогического и т.д.) применяется с различными целями: для определения существующего уровня детальности предприятий, организаций, учреждений, функционирования технологического процесса, выявления недостатков и узких мест в практике той или иной сферы деятельности, изучения эффективности применения научных рекомендаций, выявления новых образцов деятельности, рождающихся в творческом поиске передовых руководителей, специалистов и целых коллективов. Объектом изучения могут быть: массовый опыт – для выявления основных тенденций развития той или иной отрасли народного хозяйства; отрицательный опыт – для выявления типичных недостатков и узких мест; передовой опыт, в процессе которого выявляются, обобщаются, становятся достоянием науки и практики новые позитивные находки.

Изучение и обобщение передового опыта является одним из основных источников развития науки, поскольку этот метод позволяет выявлять актуальные научные проблемы, создает основу для изучения закономерностей развития процессов в целом ряде областей научного знания, в первую очередь – так называемых технологических наук.

Критерии передового опыта:

1) Новизна. Может проявляться в разной степени: от внесения новых положений в науку до эффективного применения уже известных положений.

2) Высокая результативность. Передовой опыт должен давать результаты выше средних по отрасли, группе аналогичных объектов и т.п.

3) Соответствие современным достижениям науки. Достижение высоких результатов не всегда свидетельствует о соответствии опыта требованиям науки.

4) Стабильность – сохранение эффективности опыта при изменении условий, достижение высоких результатов на протяжении достаточно длительного времени.

5) Тиражируемость – возможность использования опыта другими людьми и организациями. Передовой опыт могут сделать своим достоянием другие люди и организации. Он не может быть связан только с личностными особенностями его автора.

6) Оптимальность опыта – достижение высоких результатов при относительно экономной затрате ресурсов, а также не в ущерб решению других задач.

Изучение и обобщение опыта осуществляется такими эмпирическими методами-операциями как наблюдение, опросы, изучение литературы и документов и др.

Недостатком метода отслеживания и его разновидностей – обследования, мониторинга, изучения и обобщения опыта как эмпирических методов-действий – является относительно пассивная роль исследователя – он может изучать, отслеживать и обобщать только то, что сложилось в окружающей действительности, не имея возможности активно влиять на происходящие процессы. Подчеркнем еще раз, что этот недостаток зачастую обусловлен объективными обстоятельствами. Этого недостатка лишены методы преобразования объекта: опытная работа и эксперимент.

К методам, преобразующим объект исследования, относятся опытная работа и эксперимент. Различие между ними заключаются в степени произвольности действий исследователя. Если опытная работа – нестрогая исследовательская процедура, в которой исследователь вносит изменения в объект по своему усмотрению, исходя из своих собственных соображений целесообразности, то эксперимент – это совершенно строгая процедура, где исследователь должен строго следовать требованиям эксперимента.

Опытная работа – это, как уже было сказано, метод внесения преднамеренных изменений в изучаемый объект с известной степенью произвола. Так, геолог сам определяет – где искать, что искать, какими методами – бурить скважины, копать шурфы и т.д. Точно так же археолог, палеонтолог определяет – где и как производить раскопки. Или же в фармации осуществляется длительный поиск новых лекарственных средств – из 10 тысяч синтезированных соединений только одно становится лекарственным средством. Или же, например, опытная работа в сельском хозяйстве.

Опытная работа как метод исследования широко используется в науках, связанных с деятельностью людей – педагогике, экономике, и т.д., когда создаются и проверяются модели, как правило, авторские: фирм, учебных заведений и т.п., или создаются и проверяются разнообразные авторские методики. Или же создается опытный учебник, опытный препарат, опытный образец и затем они проверяются на практике.

Опытная работа в некотором смысле аналогична мысленному эксперименту – и там и там как бы ставится вопрос: «а что получится, если ...?» Только в мысленном эксперименте ситуация проигрывается «в уме», а в опытной работе ситуация проигрывается действием.

Но, опытная работа – это не слепой хаотический поиск путем «проб и ошибок».

Опытная работа становится методом научного исследования при следующих условиях:

1. Когда она поставлена на основе добытых наукой данных в соответствии с теоретически обоснованной гипотезой.

2. Когда она сопровождается глубоким анализом, из нее извлекают выводы и создаются теоретические обобщения.

В опытной работе применяются все методы-операции эмпирического исследования: наблюдение, измерение, анализ документов, экспертная оценка и т.д.

Опытная работа занимает как бы промежуточное место между отслеживанием объекта и экспериментом.

Она является способом активного вмешательства исследователя в объект. Однако опытная работа дает, в частности, только результаты эффективности или неэффективности тех или иных инноваций в общем, суммарном виде. Какие из факторов внедряемых инноваций дают больший эффект, какие меньший, как они влияют друг на друга – ответить на эти вопросы опытная работа не может.

Для более глубокого изучения сущности того или иного явления, изменений, происходящих в нем, и причин этих изменений, в процессе исследований прибегают к варьированию условий протекания явлений и процессов и факторов, влияющих на них. Этим целям служит эксперимент.

Эксперимент – общий эмпирический метод исследования (метод-действие), суть которого заключается в том, что явления и процессы изучаются в строго контролируемых и управляемых условиях. Основной принцип любого эксперимента – изменение в каждой исследовательской процедуре только одного какого-либо фактора при неизменности и контролируемости остальных. Если надо проверить влияние другого фактора, проводится следующая исследовательская процедура, где изменяется этот последний фактор, а все другие контролируемые факторы остаются неизменными, и т.д.

В ходе эксперимента исследователь сознательно изменяет ход какого-нибудь явлением путем введения в него нового фактора. Новый фактор, вводимый или изменяемый экспериментатором, называется экспериментальным фактором, или независимой переменной.Факторы, изменившиеся под влиянием независимой переменной, называются зависимыми переменными.

В литературе имеется множество классификаций экспериментов. Прежде всего, в зависимости от характера исследуемого объекта принято различать эксперименты физические, химические, биологические, психологические и т.д. По основной цели эксперименты делятся на проверочные (эмпирическая проверка некоторой гипотезы) и поисковые (сбор необходимой эмпирической информации для построения или уточнения выдвинутой догадки, идеи). В зависимости от характера и разнообразия средств и условий эксперимента и способов использования этих средств можно различать прямой (если средства используются непосредственно для исследования объекта), модельный (если используется модель, заменяющая объект), полевой (в естественных условиях, например, в космосе), лабораторный (в искусственных условиях) эксперимент.

Можно, наконец, говорить об экспериментах качественных и количественных, основываясь на различии результатов эксперимента. Качественные эксперименты, как правило, предпринимаются для выявления воздействия тех или иных факторов на исследуемый процесс без установления точной количественной зависимости между характерными величинами. Для обеспечения точного значения существенных параметров, влияющих на поведение изучаемого объекта, необходим количественный эксперимент.

В зависимости от характера стратегии экспериментального исследования различают:

1) эксперименты, осуществляемые методом «проб и ошибок»;

2) эксперименты на основе замкнутого алгоритма;

3) эксперименты с помощью метода «черного ящика», приводящие к заключениям от знания функции к познанию структуры объекта;

4) эксперименты с помощью «открытого ящика», позволяющие на основе знания структуры создать образец с заданными функциями.

В последние годы широкое распространение получили эксперименты, в которых средством познания выступает компьютер. Они особенно важны тогда, когда реальные системы не допускают ни прямого экспериментирования, ни экспериментирования с помощью материальных моделей. В ряде случаев компьютерные эксперименты резко упрощают процесс исследования – с их помощью «проигрываются» ситуации путем построения модели изучаемой системы.

В разговоре об эксперименте как методе познания нельзя не отметить и еще один вид экспериментирования, играющий большую роль в естественнонаучных исследованиях. Это мысленный эксперимент – исследователь оперирует не конкретным, чувственным материалом, а идеальным, модельным образом. Все знания, получаемые в ходе мысленного экспериментирования, подлежат практической проверке, в частности в реальном эксперименте. Поэтому данный вид экспериментирования стоит относить к методам теоретического познания (см. выше). П.В. Копнин, например, пишет: «Научное исследование только тогда действительно является экспериментальным, когда заключение делается не из умозрительных рассуждений, а из чувственного, практического наблюдения явлений. Поэтому то, что иногда называют теоретическим, или мыслительным экспериментом, фактически не является экспериментом. Мыслительный эксперимент – это обычное теоретическое рассуждение, принимающее внешнюю форму эксперимента».

К теоретическим методам научного познания должны быть отнесены также и некоторые другие виды эксперимента, например, так называемые математические и имитационные эксперименты. «Сущность метода математического эксперимента состоит в том, что эксперименты проводятся не с самим объектом, как это имеет место в классическом экспериментальном методе, а с его описанием на языке соответствующего раздела математики». Имитационный эксперимент представляет собой идеализированное исследование посредством моделирования поведения объекта вместо реального экспериментирования. Иначе говоря, эти виды экспериментирования – варианты модельного эксперимента с идеализированными образами. Подробнее речь о математическом моделировании и имитационных экспериментах идет ниже в третьей главе.

Итак, мы попытались описать методы исследования с самых общих позиций. Естественно, в каждой отрасли научного знания сложились определенные традиции в трактовании и использовании методов исследования. Так, метод частотного анализа в лингвистике будет относиться к методу отслеживания (метод-действие), осуществляемому методами-операциями анализа документов и измерения. Эксперименты принято делить на констатирующие, обучающие, контрольные и сравнительные. Но все они являются экспериментами (методами-действиями), осуществляемыми методами-операциями: наблюдения, измерения, тестирования и т.д.

1   2   3   4   5   6   7   8   9   ...   18

Похожие:

Учебно-методический комплекс дисциплины Разработчики: Леонидов Д. В., Леонова А. А. Идентификационный номер iconУчебно-методический комплекс дисциплины Разработчики: Леонидов Д. В. Идентификационный номер
Контрольный экземпляр находится на кафедре философии и социально-гуманитарного образования
Учебно-методический комплекс дисциплины Разработчики: Леонидов Д. В., Леонова А. А. Идентификационный номер iconУчебно-методический комплекс дисциплины Разработчики: Пишун С. В.,...
Контрольный экземпляр находится на кафедре философии и социально-гуманитарного образования
Учебно-методический комплекс дисциплины Разработчики: Леонидов Д. В., Леонова А. А. Идентификационный номер iconУчебно-методический комплекс дисциплины Разработчики: Погорская В. А идентификационный номер
Учебно-методический комплекс составлен в соответствии с требованиями государственного образовательного стандарта высшего профессионального...
Учебно-методический комплекс дисциплины Разработчики: Леонидов Д. В., Леонова А. А. Идентификационный номер iconУчебно-методический комплекс дисциплины Разработчики: Назаров М. С. Идентификационный номер
Контрольный экземпляр находится на кафедре философии и социально-гуманитарного образования
Учебно-методический комплекс дисциплины Разработчики: Леонидов Д. В., Леонова А. А. Идентификационный номер iconУчебно-методический комплекс дисциплины Разработчики: Назаров М. С. Идентификационный номер
Контрольный экземпляр находится на кафедре философии и социально-гуманитарного образования
Учебно-методический комплекс дисциплины Разработчики: Леонидов Д. В., Леонова А. А. Идентификационный номер iconУчебно-методический комплекс дисциплины Разработчики: Иващенко В. И. Идентификационный номер
Контрольный экземпляр находится на кафедре философии и социально-гуманитарного образования
Учебно-методический комплекс дисциплины Разработчики: Леонидов Д. В., Леонова А. А. Идентификационный номер iconУчебно-методический комплекс дисциплины Разработчики: Томилов В. А. Идентификационный номер
Контрольный экземпляр находится на кафедре философии и социально-гуманитарного образования
Учебно-методический комплекс дисциплины Разработчики: Леонидов Д. В., Леонова А. А. Идентификационный номер iconУчебно-методический комплекс дисциплины Разработчики: Бочкарёва А....
Контрольный экземпляр находится на кафедре теории и методики профессионального образования
Учебно-методический комплекс дисциплины Разработчики: Леонидов Д. В., Леонова А. А. Идентификационный номер iconУчебно-методический комплекс дисциплины Разработчики: Леонидова В....
Контрольный экземпляр находится на кафедре философии и социально-гуманитарного образования
Учебно-методический комплекс дисциплины Разработчики: Леонидов Д. В., Леонова А. А. Идентификационный номер iconУчебно-методический комплекс дисциплины Разработчики: Леонидова В....
Контрольный экземпляр находится на кафедре философии и социально-гуманитарного образования
Учебно-методический комплекс дисциплины Разработчики: Леонидов Д. В., Леонова А. А. Идентификационный номер iconУчебно-методический комплекс дисциплины Разработчики: Леонидова В....
Контрольный экземпляр находится на кафедре философии и социально-гуманитарного образования
Учебно-методический комплекс дисциплины Разработчики: Леонидов Д. В., Леонова А. А. Идентификационный номер iconУчебно-методический комплекс дисциплины Разработчики: Калиниченко О. В. Идентификационный номер
Направление 050100. 68 Педагогическое образование, программа подготовки Информатика и информационно-коммуникационные технологии в...
Учебно-методический комплекс дисциплины Разработчики: Леонидов Д. В., Леонова А. А. Идентификационный номер iconУчебно-методический комплекс дисциплины «Международное сотрудничество...
Учебно-методический комплекс дисциплины «Международное сотрудничество в области экологии»
Учебно-методический комплекс дисциплины Разработчики: Леонидов Д. В., Леонова А. А. Идентификационный номер iconУчебно-методический комплекс дисциплины Теоретические основы экономической...
Учебно-методический комплекс дисциплины Теоретические основы экономической географии
Учебно-методический комплекс дисциплины Разработчики: Леонидов Д. В., Леонова А. А. Идентификационный номер iconУчебно-методический комплекс дисциплины «Устойчивое развитие» Разработчики:...
Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего профессионального...
Учебно-методический комплекс дисциплины Разработчики: Леонидов Д. В., Леонова А. А. Идентификационный номер iconУчебно-методический комплекс дисциплины Разработчик: Маньшин Б. Г. Идентификационный номер
Контрольный экземпляр находится на кафедре теории, методики и практики физической культуры и спорта


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск