Биохимия





НазваниеБиохимия
страница13/17
Дата публикации21.07.2013
Размер2.08 Mb.
ТипЛекция
100-bal.ru > Химия > Лекция
1   ...   9   10   11   12   13   14   15   16   17

2. Пути синтеза аминокислот (прямое аминирование и переаминирование).

Еще сравнительно недавно считали, что биосинтез аминокислот может происходить только в надземных частях растений. Однако последующие исследования показали, что новообразование аминокислот может происходить и в подземных органах растений. При нормальных условиях развития главным путем превращения аммиака в органические соединения азота является образование аминокислот. В результате биосинтеза аминокислот было выяснено, что аммиак чаще всего реагирует с кетокислотами. Эта реакция прямого аминирования кетокислот аммиаком – основной путь синтеза аминокислот в растениях.

Реакция синтеза аминокислот идет в две фазы:

NH

1) R–COCOOH + NH3 R–C + H2O

кетокислота СООН

иминокислота
NH

2) R–C + 2 Н R–CНNH2СООН

СООН

иминокислота НАДФ*Н2 НАДФ аминокислота
На 1-й фазе кетокислота, присоединяя аммиак, образует иминокислоту. На 2-й фазе иминокислота восстанавливается и дает аминокислоту. Эта реакция идет под действием какого-либо восстанавливающего агента, например НАДФ*Н2 или НАД*Н2. Следовательно, для первичного синтеза аминокислот необходимы аммиак и кетокислоты. Основными процессами, которые приводят к образованию кетокислот, являются цикл Кребса и реакции анаэробного распада углеводов. Прямое аминирование кетокислот аммиаком – первая и наиболее важная реакция биосинтеза аминокислот. В процессе восстановительного аминирования наиболее активен фермент глутаматдегидрогеназа, который катализирует реакцию синтеза глутаминовой кислоты:

СООНСН2СН2СОСООН + NН3 + 2Н СООНСН2СН2СНNН2СООН + Н2О

-кетоглутаровая глутаминовая кислота

кислота
Глутаматдегидрогеназа в качестве активной группы содержит НАД и НАДФ, она может с разной скоростью катализировать восстановительное аминирование -кетоглутаровой, пировиноградной, -кетомасляной, -кетовалериановой, -кетокапроновой и некоторых других кислот. Из растений были выделены и другие ферментные препараты, которые катализируют реакции прямого аминирования кетокислот аммиаком. Все они относятся к дегидрогеназам, и для их действия необходимы НАД*Н2 или НАДФ*Н2.

Аспарагиновая кислота может образоваться также при прямом присоединении аммиака к фумаровой кислоте. Реакция катализируется ферментом аспаратаммиаклиазой:

СООНСН=СНСООН+ NН3 СООНСН2СНNН2СООН
Аммиак является ядом для растений, и при накоплении большого количества его может наблюдаться отравление тканей растений. Поэтому организмы вынуждены его обезвреживать. Одна из основных реакций, приводящих к связыванию аммиака, – использование его для синтеза аминокислот. Но аммиака, как правило, больше, чем требуется для синтеза аминокислот. Избыточный аммиак обезвреживается при образовании амидов – аспарагина и глутамина. Исходными веществами для биосинтеза глутамина и аспарагина являются соответственно глутаминовая и аспарагиновая кислоты. Синтез глутамина идет при участии АТФ и катализируется ферментом глутаминсинтетазой, которая широко распространена в тканях растений, грибов, бактерий и животных:

СООН СОNН2

СН2 СН2

СН2 + NН3 + АТФ СН2 + АДФ + Н3РО4

СНNН2 СНNН2

СООН СООН

глутаминовая кислота

глутамин


Энергия в этой реакции необходима для биосинтеза амидной связи. Биосинтез глутамина – довольно сложный процесс. Он состоит из четырех, а может быть, и более реакций. Детали этого процесса и промежуточные продукты еще не выяснены. Аналогичным путем происходит синтез аспарагина под действием аспарагинсинтетазы:

СООНСН2СНNН2СООН+NН3+АТФ СОNН2СН2СНNН2СООН + АДФ + Н3РО4

аспарагиновая кислота

аспарагин


Более просто обезвреживается аммиак в растениях с кислым клеточным соком и высоким содержанием яблочной, щавелевой, лимонной и других кислот (бегония, щавель). У этих растений аммиак обезвреживается главным образом его связыванием в виде аммонийных солей органических кислот:

СООНСНОНСН2СООН + NН3 СООНСНОНСН2СООNН4

яблочная кислота

яблочно-кислый аммоний


СООН СООNН4

+ NН3

СООН СООН

щавелевая кислота

щавелево-кислый аммоний


Синтез аминокислот путем прямого аминирования кетокислот аммиаком возможен лишь для ограниченного числа аминокислот, у которых в растениях имеются кетоаналоги. Образование большинства других кетокислот происходит либо в результате реакции переаминирования, либо в результате взаимных превращений аминокислот.

Переаминирование. Реакция переаминирования впервые была открыта советским исследователем А.Е. Браунштейном в 1938 году. Он наблюдал перенос аминогрупп от аминокислот на кетокислоты. Позднее было показано, что в растениях наиболее легко подвергаются переаминированию глутаминовая и аспарагиновая кислоты, что подтверждало представления об их центральной роли в процессах обмена веществ. Д.Н. Прянишников писал в 1945 году: «...благодаря легкости образования аспарагиновой и глутаминовой кислот из соответствующих кетокислот и их способности к переаминированию можно сказать, что дикарбоновые моноаминокислоты являются как бы большими воротами на пути, ведущем к синтезу других аминокислот, а следовательно, и белков». К настоящему времени изучено очень большое число реакций переаминирования, приводящих к образованию различных аминокислот. Только в растениях в результате переаминирования может синтезироваться до 30 аминокислот, а всего известно около 100 реакций переаминирования. В процессе обмена веществ наибольшее значение имеют следующие реакции переаминирования:

глутаминовая кислота + щавелево-уксусная кислота -кетоглутаровая кислота + аспарагиновая кислота

глутаминовая кислота + пировиноградная кислота -кетоглутаровая кислота + аланин

аспарагиновая кислота + пировиноградная кислота щавелево-уксусная кислота + аланин
Реакции переаминирования катализируются аминотрансферазами, которые представляют собой двухкомпонентные ферменты. Их активной группой является фосфорилированное производное пиридоксина (витамин В6) – пиридоксальфосфат (сокращенно ПЛФ). В процессе переаминирования возникает комплексное соединение реагирующей аминокислоты с пиридоксальфосфатом. Затем этот комплекс распадается, и образуются пиридоксаминфосфат (ПМФ) и соответствующая кетокислота. На 2-й стадии реакции ПМФ реагирует с другой кетокислотой, в результате чего синтезируется новая аминокислота, и освобождается свободной пиридоксальфосфат:
ПЛФ + аминокислота I ПМФ + кетокислота I

ПМФ + кетокислота II ПЛФ + аминокислота II



пиридоксальфосфат (ПЛФ)

пиридоксаминфосфат (ПМФ)


В настоящее время принята теория механизма действия аминотрансфераз, разработанная А.Е. Браунштейном и М.М. Шемякиным. В соответствии с этой теорией механизм реакции переаминирования может быть изображен следующим образом. На 1-й стадии аминокислота I, реагируя с аминотрансферазой, которая представляет собой комплекс пиридоксальфосфата со специфическим белком, образует с выделением воды соединение аминокислоты с ферментом:



аминокислота I

аминотрансфераза

аминокислота I – аминотрансфераза


В комплексном соединении такого типа понижена электронная плотность у -углеродного атома, соответствующего остатку аминокислоты, вследствие чего водород легко подвергается диссоциации, и это соединение переходит в свою таутомерную форму с соответствующей перегруппировкой двойных связей. Затем эта таутомерная форма комплекса аминокислоты с аминотрансферазой подвергается гидролизу, в результате чего образуется кетокислота I, соответствующая исходной аминокислоте, а аминогруппа переносится на аминотрансферазу:




аминокислота I-аминотрансфераза

кетокислота I

фосфопиридок-саминная форма аминотрансфе-разы


На следующем этапе происходит взаимодействие фосфопиридоксаминной формы аминотрансферазы с другой кетокислотой II, образование соответствующего комплекса, затем происходит распад этого комплекса с переносом аминогруппы на кетокислоту II и образование аминокислоты II и исходной фосфопиридоксалевой формы аминотрансферазы:

аминотрансфераза–ПМФ+кетокислота II аминотрансфераза–ПЛФ+аминокислота II

В результате реакций переаминирования синтезируются самые разнообразные аминокилоты. С этими реакциями связаны многие процессы обмена веществ в организмах.

3.Пути превращения аминокислот (дезаминирование, декарбоксилирование).

Аминокислоты, образовавшиеся в растениях при восстановительном аминировании, переаминировании или другим путем, подвергаются непрерывному обмену. В основном, они используются для синтеза белков, но могут претерпевать и другие превращения – декарбоксилироваться, использоваться для синтеза азотистых оснований и других соединений, отщеплять аминогруппу, полностью окисляться и служить источником энергии для организмов.

Дезаминирование аминокислот – распад на аммиак и соответствующие кислоты – является основной реакцией превращения азотистых веществ в безазотистые соединения, которые могут подвергаться дальнейшему обмену. Дезаминирование аминокислот может происходить 3 основными путями:

  1. Восстановительное дезаминирование, в котором образуется соответствующая кислота и аммиак:



+ 2 Н

RCHCOOH RCH2COOH + NH3.

NH2

HAД*Н2 НАД
2. Гидролитическое дезаминирование, приводящее к образованию оксикислоты и аммиака:


2О

RCHCOOH RCHОНCOOH + NH3.

NH2

3. Окислительное дезаминирование, когда образуется кетокислота и аммиак:


+1\2 О2

RCHCOOH RCОCOOH+ NH3.

NH2

Аминокислоты наиболее часто распадаются в результате окислительного дезаминирования. Реакция идет в две стадии. На первой стадии аминокислота дегидрируется и превращается в соответствующую иминокислоту:


–2Н

RCHCOOH RCCOOH.

NH2 NH

ФАД ФАД*Н2
На второй стадии к иминокислоте присоединяется вода и отщепляется аммиак:


2О

RCHCOOH RCCOOH+ NH3.

NH

Реакции окислительного дезаминирования катализируются ферментами, которые получили название оксидаз аминокислот.

Декарбоксилирование аминокислот. При декарбоксилировании аминокислот от аминокислоты отщепляется СО2. Если декарбоксилированию подвергается дикарбоновая кислота, то в результате реакции возникает соответствующая монокарбоновая кислота:


–СО2

СООНСН2СН2СНNН2СООН СООНСН2СН2СН22

глутаминовая кислота

-аминомасляная кислота


При декарбоксилировании монокарбоновых аминокислот образуются соответствующие амины:


–CO2

RCHNH2COOH RCH2NH2

Реакции, приводящие к образованию аминов, катализируются специфичными ферментами – декарбоксилазами аминокислот. Амины могут накапливаться только при некоторых неблагоприятных условиях развития. Обычно они подвергаются дальнейшим превращениям. Основной путь превращения аминов – их окисление. Окисление моноаминов катализируется монооксидазами. Продуктами реакции являются соответствующий альдегид и аммиак:

2О2 + О2
O

RCH2NH2 RC + NH3 + H2O2

H

Окисление диаминов катализируется диаминооксидазами с образованием аминоальдегидов и аммиака:


2О2 + О2
O

NH2CH2RCH2NH2 NH2CH2RC + NH3 + H2O2

H

Альдегиды могут окисляться дальше в соответствующие кислоты. Из аминов в растениях синтезируются различные гетероциклические соединения, в частности алкалоиды.

4.Орнитиновый цикл.

Из аминокислот, поступающих с белками в пищу, в организме синтезируются белковые вещества различных органов и тканей. В процессе жизнедеятельности клеток и тканей белки распадаются, и образовавшиеся аминокислоты также претерпевают распад. Аминокислоты могут окисляться до конечных продуктов – мочевины, аммонийных солей, углекислого газа, серной и фосфорной кислот и воды.

Конечным продуктом распада простых белков является мочевина. Процесс образования мочевины происходит через орнитиновый цикл:
1
карбомилфосфатсинтетаза
) О

NH3 + CO2 + АТФ NH2–C–OPO3H2 + АДФ




карбомилфосфат


2
орнитинкарбомилтрансфераза
) СН222

2–С–О– PO3H2 + (СН2)2 С=О

О СНNН2 NН + Н3РО4

СООН (СН2)3

СНNН2

СООН

карбомилфосфат

орнитин

цитруллин


3) NН2

СООН NН2 СООН


аргининсукцинатсин-тетаза
С=О

СН2

NН + + АТФ АДФ + Н3РО4 + С=N–СН

СНNН2 NН СН2

(СН2)3

СООН

СНNН2 (СН2)3 СООН

СООН СНNН2

СООН

цитруллин

аспарагиновая кислота

аргинин-янтарная кислота


4
аргининсукцинатлиаза
) NН2

Аргинин-янтарная кислота С=NН СООН

NН СН

(СН2)3 + СН

СНNН2 СООН

СООН

аргинин

фумаровая кислота


5) NН222


аргиназа
С=NН (СН2)2

NН + Н2О + С=О

(СН2)3 СНNН2

СНNН2 СООН NН2

СООН

аргинин

орнитин

мочевина


Фумаровая кислота может вновь присоединять молекулу аммиака и превращаться в аспарагиновую кислоту, которая необходима для синтеза аргинин-янтарной кислоты.

Суммарное уравнение биосинтеза мочевины:
СО2 + 2 NН2 + 3 АТФ + 2 Н2О СО(NН2)2 + 3 АДФ + 3 Н3РО4

Лекция 14.

Обмен белков

1.Матричный принцип комплементарности.

2.Четыре этапа биосинтеза белковой молекулы.

3.Реакции транспептидации.

4.Распад белков.

1   ...   9   10   11   12   13   14   15   16   17

Похожие:

Биохимия iconМетодические указания к самостоятельной работе Специальность 020208. 65 Биохимия
Учебное пособие предназначено для студентов, обучающихся по специальности «Биохимия»
Биохимия iconМетодические указания к самостоятельной работе Специальность 020208. 65 Биохимия
Учебное пособие предназначено для студентов, обучающихся по специальности «Биохимия»
Биохимия iconБиохимия тканей
Биохимия тканей: методические указания к самостоятельной работе [Текст ] / cост. Е. В. Инжеваткин – Красноярск: Сибирский федеральный...
Биохимия iconБиохимия мембран
Методические указания предназначены для студентов, обучающихся по специальности 012300 Общая биохимия. В учебном пособии представлена...
Биохимия iconБиохимия мембран
Методические указания предназначены для студентов, обучающихся по специальности 012300 Общая биохимия. В учебном пособии представлена...
Биохимия iconПрограмма по дисциплине «Биохимия»
Целью изучения дисциплины является освоение теоретическими основами дисциплины «Биохимия» по разделам: строение и состав структурных...
Биохимия iconПамятка для студентов направления 260800 «Технология продукции и...
Дисциплина «Биохимия» общим объемом 180 часов: лекции – 34 часа, лабораторные работы – 34 часа, практические занятия -17 часов, самостоятельная...
Биохимия iconУчебно-методический комплекс по дисциплине «Биохимия молока и мяса»...
Учебно-методический комплекс по дисциплине «Биохимия молока и мяса» составлен на основе
Биохимия iconРабочая программа по дисциплине биологическая химия биохимия полости...
Настоящая рабочая программа составлена на основе примерной программы по дисциплине биологическая химия – биохимия полости рта, рекомендованной...
Биохимия iconРабочей учебной программы по дисциплине микробиология, вирусология 060601 Медицинская биохимия

Биохимия iconРабочая программа составлена в соответствии с: Федеральным государственным...
Федеральным государственным образовательным стандартом высшего профессионального образования по направлению подготовки (специальности):...
Биохимия iconРабочей учебной программы по дисциплине общая и клиническая иммунология...

Биохимия iconРоссийской федерации
«Биология», профили Ботаника, Зоология, Физиология, Генетика, Биоэкология; Биохимия
Биохимия iconДомашнее задание на 19. 01. 13
Учебно-методический комплекс по дисциплине «Биохимия молока и мяса» составлен на основе
Биохимия iconСамостоятельная работа 156 (час.)
По направлению подготовки 060601 Медицинская биохимия (квалификация «специалист»)
Биохимия iconТема №1 «учение о клетке»
Учебно-методический комплекс по дисциплине «Биохимия молока и мяса» составлен на основе


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск