Биохимия





НазваниеБиохимия
страница16/17
Дата публикации21.07.2013
Размер2.08 Mb.
ТипЛекция
100-bal.ru > Химия > Лекция
1   ...   9   10   11   12   13   14   15   16   17

3.Синтез РНК. Содержание РНК во всех клетках не постоянно, а может резко изменяться в зависимости от вида, возраста и физиологического состояния организма или ткани. Обычно количество РНК больше в молодых клетках, через в старых. Кроме того, в клетках содержатся различные по свойствам и молекулярному весу виды РНК: рибосомная, транспортная и информационная. Все это создает значительные трудности при изучении проблемы биосинтеза рибонуклеиновых кислот. В настоящее время считают, что биосинтез рибонуклеиновых кислот может происходить в результате одного из следующих типов реакций:

  • действия полинуклеотидфосфорилазы;

  • наращивания имеющихся полинуклеотидных цепей;

  • ДНК–зависимого синтеза РНК;

  • РНК–зависимого синтеза РНК.

1.Синтез РНК из рибонуклеозиддифосфатов катализирует фермент полинуклеотидфосфорилаза. Для действия фермента необходимо наличие в реакционной среде ионов магния, при синтезе РНК освобождается неорганический фосфат. Реакция синтеза РНК идет по схеме:

+ n Н2О

n [рибонуклеозиддифосфат] n [рибонуклеотид РНК] + n Н3РО4

– n Н2О

В качестве источников дифосфатов могут служить АДФ, УДФ, ГДФ и ЦДФ. Для синтеза высокомолекулярных полимеров в реакционную смесь необходимо добавлять некоторое количество «затравки». Состав «затравки» не оказывает влияния на состав синтезируемого продукта. В качестве «затравки» можно взять любую РНК или любой полинуклеотид. Состав синтезирующейся РНК зависит только от количества и соотношения нуклеозиддифосфатов в реакционной среде. Если в среде будет преобладать какой-нибудь нуклеозиддифосфат, то он же преобладает в составе РНК.

2. Наращивание полинуклеотидных цепей. В клетках имеются и другие ферменты, катализирующие присоединение рибонуклеозидтрифосфатов (АТФ, ГТФ, УТФ, ЦТФ) к цепи нуклеиновых кислот. Трифосфаты могут присоединяться к концу цепи РНК или включаться в полирибонуклеотидную цепочку между отдельными ее звеньями. Присоединение трифосфатов происходит с отщеплением неорганического пирофосфата.

3. ДНК-зависимый синтез РНК. С точки зрения передачи наследственной информации в процессе биосинтеза белков наибольшее значение имеет синтез молекулы РНК на участке молекулы ДНК как на матрице. Таким путем синтезируется главным образом информационная РНК. Так как ДНК сосредоточена в ядре клетки, то и биосинтез и-РНК происходит в ядре. Исходными веществами, необходимыми для биосинтеза, являются рибонуклеозидтрифосфаты (АТФ, ГТФ, ЦТФ и УТФ). Синтез катализируется ферментом РНК-нуклеотидилтрансферазой.

ng АТФ АФ

+


рибонуклеозид-трифосфаты
ng ЦТФ + ДНК ДНК + ЦФ + 4 n ФФ


нуклеотиды
+

ng ГТФ ГФ

+

ng УТФ УФ n


РНК


Фермент РНК-нуклеотидилтрансфераза выделен из клеток растений и животных. Он существенно отличается от полинуклеотидфосфорилазы, так как для его действия необходимо наличие ДНК, а исходными веществами для синтеза РНК под действием этого фермента являются трифосфаты нуклеотидов. Состав образующейся РНК индентичен составу ДНК (принимая, что урацил соответствует тимину). Для реакции необходимы ионы марганца, а не магния. Как известно, ДНК представляет собой двойную спираль. При синтезе информационной РНК «копируется» только одна из двух спиралей ДНК. Фермент, продвигаясь вдоль спирали, катализирует соединение между собой соответствующих трифосфатов с образованием на значащей цепи ДНК комплементарной ей цепи и-РНК. Перенос информации от ДНК на РНК получил название транскрипции. Однако другие типы РНК (р-РНК и т-РНК) не коррелируют по нуклеотидному составу с ДНК. Исследования показали, что синтез р-РНК и т-РНК также определяется ДНК. Но р-РНК представляет собой продукт транскрипции лишь очень небольшой части молекулы ДНК. Лишь около 0,4% всей ДНК комплементарно р-РНК, и только небольшой участок молекулы р-РНК образуется на ДНК, а остальная часть молекулы синтезируется под действием других ферментов. 0,025 % клеточной ДНК представляет собой участок, комплементарный по порядку оснований в т-РНК. Метилирование части оснований, входящих в состав молекулы т-РНК, происходит, вероятно, после образования полинуклеотидной цепи.

РНК-зависимый синтез РНК. Большое число растительных, животных и бактериальных вирусов в качестве наследственного материала содержит не ДНК, а РНК. Синтез вирусной РНК может происходить непосредственно на цепи родительской РНК как на матрице, которая одновременно служит «затравкой». Такой синтез катализируется ферментом РНК-зависимой-РНК-полимеразой (РНК-синтетазой). Фермент катализирует биосинтез новых молекул РНК из рибонуклеозидтрифосфатов. Таким образом, в последние годы удалось выяснить пути образования нуклеотидов, являющихся исходным веществом для синтеза нуклеиновых кислот, установить механизм синтеза и выделить ферментные системы, катализирующие образование ДНК и РНК.

Лекция 16.

Обмен нуклеиновых веществ

1.Распад нуклеиновых кислот

2.Распад нуклеотидов и нуклеозидов.

3.Обмен минеральных веществ
1.Распад нуклеиновых кислот

Распад нуклеиновых кислот до более простых соединений происходит в несколько стадий и катализируется рядом ферментов, которые содержатся в растениях. При определенных условиях распад нуклеиновых кислот идет довольно быстро.

Распад РНК и ДНК. В нуклеиновых кислотах единственными связями, доступными действию ферментов, являются связи фосфорных эфиров, через которые нуклеотиды соединяются между собой в цепи. Эти связи и расщепляются в первую очередь на начальной стадии распада нуклеиновых кислот. Рибонуклеиновая кислота расщепляется под действием специфического фермента рибонуклеазы с участием воды на мононуклеотиды и фосфорную кислоту. ДНК расщепляется до нуклеотидов под действием дезоксирибонуклеазы, которая является высокоспецифичным ферментом, на РНК и рибонуклеотиды она не действует. ДНК может расщепляться до дезоксирибонуклеозидтрифосфатов также под действием ДНК-нуклеотидилтрансферазы. Образовавшиеся под действием ферментов нуклеотиды могут использоваться для образования новых молекул нуклеиновых кислот или подвергаться дальнейшим превращениям.


2.Распад нуклеотидов и нуклеозидов.

Распад нуклеотидов. Отщепление фосфорной кислоты от нуклеотидов может происходить под действием многих фосфатаз. Фосфатазы проявляют активность и по отношению к другим моноэфирам фосфорной кислоты, и их действие малоспецифично. В этой группе ферментов есть специфические фосфатазы, так называемые нуклеотидазы, которые расщепляют только нуклеотиды, образовавшиеся при распаде ДНК и РНК. 5-нуклеотидазы – специфичные фосфатазы, катализирующие отщепление фосфорной кислоты, присоединенной к пятому углеродному атому рибозы в нуклеотиде, 3-нуклеотидазы отщепляют минеральный фосфат, присоединенный к третьему углеродному атому рибозы. В результате действия нуклеотидаз образуются соответствующие нуклеозиды и минеральная Н3РО4.

Распад нуклеозидов. Нуклеозиды могут подвергаться дальнейшим превращениям. Основной путь этих превращений – расщепление гликозидной связи между основанием и пентозой, которое катализируется ферментом, относящимся к группе нуклеозидаз. В большинстве случаев распад нуклеозидов идет по следующей схеме и носит гидролитический характер:

гуанозин + Н2О нуклеозидаза гуанин + рибоза

(нуклеозид) (азотистое основание)

В результате действия нуклеозидаз образуются свободные пуриновые или пиримидиновые основания и рибоза или дезоксирибоза.

Распад пуриновых оснований. Пуриновые основания в свободном состоянии в тканях содержатся в небольшом количестве и, в зависимости от физиологического состояния ткани, обычно используются для образования нуклеотидов и нуклеиновых кислот или подвергаются дальнейшему распаду. Аденин под действием адениндезаминазы подвергается гидролитическому дезаминированию с образованием гипоксантина, который под действием фермента ксантиноксидазы окисляется до ксантина, а затем до мочевой кислоты. Другое пуриновое основание – гуанин дезаминируется под действием фермента гуаниндезаминазы, превращается в ксантин, который, в свою очередь, также окисляется до мочевой кислоты. Мочевая кислота – конечный продукт пуринового обмена у человека. В организме более низкоорганизованных животных мочевая кислота превращается в аллантоин, который является у них конечным продуктом обмена пуринов. При распаде пуриновых оснований у растений конечными продуктами их превращений являются аммиак, углекислота и глиоксиловая кислота. На первой стадии мочевая кислота под действием уратоксидазы превращается в аллантоин. Вероятно, уратоксидаза представляет собой комплекс ферментов. Аллантоин превращается в аллантоиновую кислоту под действием фермента аллантоиназы. Аллантоиновая кислота расщепляется далее при участии аллантоиназы с присоединением воды до глиоксиловой кислоты и мочевины, а мочевина под действием уреазы гидролизуется, и образуется аммиак и углекислый газ.

Таким образом, азот пуриновых оснований превращается в конечном счете в аммиак и может вновь использоваться для органического синтеза. Пути распада пиримидиновых оснований изучены в меньшей степени, чем превращение пуриновых оснований.

Цитозин и 5-метилцитозин могут подвергаться гидролитическому дезаминированию под действием цитозиндезамининазы с образованием соответственно урацила и тимина. Тимин и урацил затем окисляются; ферменты, катализирующие их окисление, выделены из экстрактов ряда почвенных микроорганизмов. При окислении тимина образуется 5-метилбарбитуровая кислота, а при окислении урацила – барбитуровая кислота. Предполагается, что оба пиримидиновых основания окисляются под действием одного и того же фермента – урацилдегидрогеназы. Механизм взаимных превращений 5-метилбарбитуровой и барбитуровой кислот выяснен недостаточно, однако возможно, что эти превращения происходят в результате переноса метильной группы. Барбитуровая кислота подвергается гидролитическому расщеплению до малоновой кислоты и мочевины. Эта реакция катализируется барбитуразой – высокоспецифичным ферментом, катализирующим распад только барбитуровой кислоты и не действующим на ее производные. Мочевина затем может расщепляться до аммиака и углекислоты под действием уреазы. Конечными продуктами распада пиримидиновых оснований также являются простые соединения: аммиак, углекислый газ и малоновая кислота.

Пути распада нуклеиновых кислот выяснены лишь в самых общих чертах. При расщеплении нуклеиновых кислот в организмах, так же как и при распаде сложных углеводов, белков и других соединений, должно выделяться большое количество энергии, которая может быть запасена в виде макроэргических соединений и использована организмом. Однако на каких этапах распада нуклеиновых кислот выделяется энергия и в каком количестве, еще не ясно. Детализация путей распада нуклеиновых кислот и выяснение энергетической роли этих процессов – дело ближайшего будущего.

3.Обмен минеральных веществ. Минеральным веществам принадлежит важная роль в организме, так как при их участии осуществляется ряд физиологических функций:

1. Опорная функция – в состав костной ткани в основном входят минеральные вещества, не растворимые в воде.

2. С минеральными веществами связаны явления осмотического давления, ионной силы и буферных свойств раствора.

3. Они – важная составная часть клеток всех биологических систем, так как входят в состав ферментов, витаминов, белков и т.д.

В зависимости от количественного содержания и потребности в них организма все минеральные вещества делят на макро- и микроэлементы.

К макроэлементам относятся натрий, калий, кальций, магний, хлор, фосфор, сера; к микроэлементам – железо, медь, цинк, марганец, кобальт, молибден, йод.

Натрий, калий, хлор содержатся в составе пищевых рационов совместно. Роль этих элементов в основном сводится к тому, что они – главная составная часть ионных осмотических структур жидких сред организма. Кроме того, натрий и калий обладают специфическим физиологическим действием на возбудимость нервной и мышечной тканей. У некоторых ферментных систем они выполняют функцию кофактора (например, пируваткиназа, для деятельности которой требуются калий и натрий).

Около половины от общего содержания натрия в организме найдено в составе внеклеточной жидкости, 1/3 – в составе костной и хрящевой тканей. Калий, в противоположность натрию, находится преимущественно внутри клеток. Ион хлора локализован в основном внеклеточно.

Потребность в ионах хлора составляет 1,5 г/сут., для натрия и калия – 1 г/сут.

Фосфор, магний и кальций также находятся совместно в составе пищевых продуктов и в организме человека. Эти элементы сосредоточены в костной ткани.

Фосфор находится как в виде неорганических ионов, так и в виде эфиров различных органических соединений. Содержание фосфора в плазме значительно колеблется в зависимости от возраста. У детей – 5 мг/100 мл крови, у взрослых снижается до 3 мг. Суточная потребность в фосфоре примерно равна 1 г, недостаточность фосфора ведет к развитию рахита. Под влиянием кальциферола всасывание фосфатов усиливается.

Магний в организме находится в виде ионов, не связанных ковалентной связью. Для многих ферментных систем он является кофактором. Половина магния, содержащегося в организме, падает на долю костной ткани. Среднесуточная потребность в магнии не превышает 300 мг.

Кальций, так же как и магний, находится в организме в виде ионов. Его содержание достигает 2% от общего веса тела, и 99% его локализовано в костной ткани, остальная доля находится во внеклеточной жидкости. Часть кальция связана с белками. Потребность в кальции – в среднем от 0,5 до 1 г. Нехватка кальция в пище приводит к недостаточному окостенению и недоразвитости скелета. Из продуктов питания важнейший источник кальция – молоко, в котором содержится около 120 мг% Са, молочные продукты (творог, сыр и другие). Овощи также являются источником органического кальция.

Железо содержат все известные биологические системы. В каждой клетке оно содержится в форме дыхательных ферментов и как катализатор переноса электронов, не связанных с кислородом. У многоклеточных организмов железо выполняет функцию переноса кислорода, т.е. обратимого связывания молекулярного кислорода. После гемоглобина большая часть железа связана с ферментами, гемосидерином, трансферрином. Потребность организма в железе составляет окло 1 мг. В продуктах питания животного и растительного происхождения железо содержится в большем или меньшем количестве. Много его в шпинате, яйцах и печени.

Микроэлементы имеют жизненно важное значение для человека.

Медь найдена в составе двух ферментов – цитохромоксидазы и дефенилоксидазы, в составе некоторых белков плазмы, печени, головного мозга и эритроцитов. Суточная потребность в ней – 2 мг.

Цинк входит в состав примерно 80 ферментов, обнаружен в комплексе с белками. Суточная потребность – 5 мг.

Марганец в ряде ферментов действует как кофактор и интенсифицирует обменные процессы. Суточная потребность – 25 мг.

Йод является составной частью гормонов щитовидной железы – тиреоглобулина, трийодтиронина, тироксина. Суточная потребность в йоде – 0,2–0,3 мг.

Лекция 17.

Регуляция обменных процессов
1.Влияние пищевых веществ на процессы обмена.

2.Взаимосвязь превращений белков, жиров и углеводов.

3.Типы регуляции обменных процессов в биологических системах.
1   ...   9   10   11   12   13   14   15   16   17

Похожие:

Биохимия iconМетодические указания к самостоятельной работе Специальность 020208. 65 Биохимия
Учебное пособие предназначено для студентов, обучающихся по специальности «Биохимия»
Биохимия iconМетодические указания к самостоятельной работе Специальность 020208. 65 Биохимия
Учебное пособие предназначено для студентов, обучающихся по специальности «Биохимия»
Биохимия iconБиохимия тканей
Биохимия тканей: методические указания к самостоятельной работе [Текст ] / cост. Е. В. Инжеваткин – Красноярск: Сибирский федеральный...
Биохимия iconБиохимия мембран
Методические указания предназначены для студентов, обучающихся по специальности 012300 Общая биохимия. В учебном пособии представлена...
Биохимия iconБиохимия мембран
Методические указания предназначены для студентов, обучающихся по специальности 012300 Общая биохимия. В учебном пособии представлена...
Биохимия iconПрограмма по дисциплине «Биохимия»
Целью изучения дисциплины является освоение теоретическими основами дисциплины «Биохимия» по разделам: строение и состав структурных...
Биохимия iconПамятка для студентов направления 260800 «Технология продукции и...
Дисциплина «Биохимия» общим объемом 180 часов: лекции – 34 часа, лабораторные работы – 34 часа, практические занятия -17 часов, самостоятельная...
Биохимия iconУчебно-методический комплекс по дисциплине «Биохимия молока и мяса»...
Учебно-методический комплекс по дисциплине «Биохимия молока и мяса» составлен на основе
Биохимия iconРабочая программа по дисциплине биологическая химия биохимия полости...
Настоящая рабочая программа составлена на основе примерной программы по дисциплине биологическая химия – биохимия полости рта, рекомендованной...
Биохимия iconРабочей учебной программы по дисциплине микробиология, вирусология 060601 Медицинская биохимия

Биохимия iconРабочая программа составлена в соответствии с: Федеральным государственным...
Федеральным государственным образовательным стандартом высшего профессионального образования по направлению подготовки (специальности):...
Биохимия iconРабочей учебной программы по дисциплине общая и клиническая иммунология...

Биохимия iconРоссийской федерации
«Биология», профили Ботаника, Зоология, Физиология, Генетика, Биоэкология; Биохимия
Биохимия iconДомашнее задание на 19. 01. 13
Учебно-методический комплекс по дисциплине «Биохимия молока и мяса» составлен на основе
Биохимия iconСамостоятельная работа 156 (час.)
По направлению подготовки 060601 Медицинская биохимия (квалификация «специалист»)
Биохимия iconТема №1 «учение о клетке»
Учебно-методический комплекс по дисциплине «Биохимия молока и мяса» составлен на основе


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск