Дифракция электронов. Электронный микроскоп





Скачать 419.45 Kb.
НазваниеДифракция электронов. Электронный микроскоп
страница3/3
Дата публикации15.10.2014
Размер419.45 Kb.
ТипРеферат
100-bal.ru > Астрономия > Реферат
1   2   3

Рис. 6. Электорнограмма высокого разрешения (окись цинка):

вверху  электронограмма; внизу  увеличенное изображение участка А.

В нашей стране и за рубежом применяются специализированные электронографы промышленного типа. Кроме того, в некоторых элек­тронных микроскопах предусмотрена возможность работы в режиме электронографии.

Следует заметить, что с точки зрения физики получение элек­тронограмм представляет собой процесс, во многом близкий процессу получению рентгенограмм в рентгеноструктурном анализе. Действи­тельно, если в электрографии используется дифракция электронов, то в рентгеноструктурном анализе происходит дифракция рентгенов­ских лучей на атомных структурах. Естественно, что каждый из этих методов имеет свою область применения.

Особенности работы с электронным микроскопом.

Остановимся кратко на основных приемах работы в электронной микроскопии. Естественно, что эти приемы своеобразны, учитывая сверхмалые размеры объектов, подлежащих исследованию. Так, на­пример, в биологических исследованиях находят применения «сверхтонкие ножи» - микротомы, позволяющие получать срезы биоло­гических объектов толщиной менее 1 мкм.

Главные особенности методики электронной микроскопии опре­деляются необходимостью помещения объекта исследования внутрь колонны электронного микроскопа, т.е. в вакуум и обеспечения условий высокой чистоты, так как малейшие загрязнения могут существенно исказить результаты. Для просвечивающего электронного микроскопа объект приготовляется в виде тонких пленок, в качестве которых мо­гут служить различного рода лаки, пленки металлов и полупроводников, ультратонкие срезы биологических препаратов. Кроме того, объектами исследования могут быть тонко измельченные (диспергированные) совокупности частиц. Обычно в просвечивающих микроскопах, работающих при напряжениях 50-100 кв, толщина объек­тов не может превышать 200 А(для неорганических веществ) и 1000 А (для органических). Биологические объекты в большинстве случаев приходится контрастировать, т.е. «окрашивать» (солями тяжелых ме­таллов), оттенять напылением металлов (платиной, палладием и др.) и использовать ряд других приемов. Необходимость контрастирования вызвана тем, что большинство биологических объектов содержит атомы легких элементов (с малым атомным номером) - водород, угле­род, азот, кислород, фосфор и т.д. в то же время толщина объектов, интересных для биологии и медицины, составляет величину порядка 50 А. Без контрастирования при электронно-микроскопических ис­следованиях вирусов наблюдаются бесструктурные пятна, а отдельные молекулы нуклеиновых кислот вообще неразличимы. Ис­пользование методов контрастирования позволяет эффективно применить электронную микроскопию в биологических исследованиях и в том числе при исследованиях больших молекул (макромолекул)  см., например, рис. 7.

Рис. 7. РНК из вируса табачной мозаики (из раствора с ионной силой 0,0003 мкм).

В ряде случаев при исследовании, например, массивных объек­тов в технике широкое применение находит метод получения отпечатков, который заключается в изготовлении и последующем ис­следовании в микроскопе копий поверхностей объектов.

Используются как естественные отпечатки (тонкие слои оки­слов), так и искусственные, получаемые путем нанесения (напыления, осаждения) пленок кварца, углерода и других веществ. Наибольшее разрешение ( 10 А) позволяют получить угольные реплики, которые находят широкое применение как в технике, так и в биологии.

При наблюдении электронно-микроскопическими методами влажных объектов ( в том числе живых клеток) используются вакуумно-изолированные газовые микрокамеры. Объекты исследования помещаются в электронных микроскопах на тончайшие пленки - под­ложки, которые крепятся на специальных сетках, изготовляемых обычно из меди электролитическим способом. Эти пленки должны удовлетворять целому ряду требований, поскольку относительно большая толщина их, а также сильное рассеяние ими электронов при­водят к резкому ухудшению качества изображения объекта. Кроме того, материал таких пленок должен обладать хорошей теплопровод­ностью и высокой стойкостью к электронной бомбардировке.

Кстати, об электронной бомбардировке объекта исследования и ее последствиях. При попадании электронов на объект они выделяют энергию, примерно равную кинетической энергии их движения. В ре­зультате могут происходить местный разогрев и разрушение участков объекта.

Электронный микроскоп часто используется для микрохимичес­кого анализа исследуемого вещества согласно методу, предложенному М. И. Земляновой и Ю. М. Кушниром. По существу этот метод аналоги­чен методу микрохимического анализа с помощью оптического микро­скопа. В данном случае электронный микроскоп используется в качес­тве устройства, способного обнаружить малые количества искомого вещества (по форме и структуре кристаллов и т.п.). на поверхность водного раствора, в котором предполагается наличие искомых ионов, наносится капля 1 — 1,5% раствора нитроклетчатки в амилацетате. Капля растекается по поверхности жидкости и образует коллодиевую пленку, на которую наносится капля реагента. Ионы реагента прони­кают (диффундируют) сквозь пленку и, взаимодействуя с раствором, образуют на поверхности пленки кристаллы, которые содержат ионы, подлежащие обнаружению. После специальной очистки кусочек пленки с кристалликами помещается в электронный микроскоп, и на основе изучения этих кристалликов оказывается возможным дать ответ о на­личии искомых ионов, а в ряде случаев — и об их концентрации. Такой метод микрохимического анализа характеризуется высокой чувстви­тельностью (на 2 — 3 порядка большей по сравнению с другими спосо­бами). Например, ионы марганца могут быть обнаружены в растворе с концентрацией не ниже 10-11 нормального раствора при содержании иона 10-11 г (по данным А. М. Решетникова).

Пути преодоления дифракционного предела электронной микроскопии.

К настоящему времени электронная микроскопия достигла больших успехов и нашла многочисленные применения. Однако в ряде случаев, о которых кратко было сказано выше, было бы чрезвычайно желательным добиться дальнейшего прогресса в электронной микро­скопии. Это в первую очередь относится к проблеме достижения большей разрешающей способности.

На пути решения этой краеугольной задачи стоят чрезвычайно серьезные технические трудности, связанные с проблемами создания электронных линз, их взаимного расположения формирования одно­скоростных электронных потоков. Совокупность этих факторов приво­дит в конечном итоге к различного рода искажениям, играющим важ­ную роль при больших увеличениях и приводящим к тому, что практи­чески достигаемое разрешение оказывается хуже предельного.

По мере приближения электронной микроскопии к своим пре­дельным возможностям все труднее и труднее становится вносить в нее дальнейшие усовершенствования.

Самые последние достижения в электронной микроскопии осно­ваны на применении новых высоковольтных (V = 100 кв) и сверхвысоко­вакуумных (вакуум 2e-10 мм рт.ст.) приборов. Высоковольтная элек­тронная микроскопия, как показывает опыт, позволяет уменьшить хро­матическую аберрацию электронных линз. В печати сообщается, на­пример, о том, что с помощью нового японского микроскопа SMH-5 мо­гут быть получены фотографии решеток с межплоскостным расстоя­нием 1 А. Сообщается также, что на новом электронном микроскопе с ускоряющим напряжением 750 кв получено разрешение, равное 3 А.

Рассматриваются возможности применения в электронной мик­роскопии линз из сверхпроводящих сплавов (например, Hi  Zn), кото­рые позволят получить высокие оптические свойства электронных сис­тем и исключительную стабильность полей. Ожидается, что использо­вание специальных линз-фильтров позволит получить новые резуль­таты в отражательной электронной микроскопии. При использовании таких линз в просвечивающем электронном микроскопе удалось суще­ственно улучшить их разрешающую способность.

В растровых электронных микроскопах просвечивающего типа к настоящему времени достигнута разрешающая способность в 100 А. Новый эмиссионный микроскоп позволяет получать разрешения дета­лей с размерами от 120 (для фотоэмиссии) до 270 А (для вторичной эмиссии).

Вызывает интерес сообщение о том, что голландская фирма Philips вносит ряд усовершенствований в микроскоп типа EM-300, кото­рые позволят довести практическую разрешающую способность до теоретического предела (!). Правда, о существе этих усовершенство­ваний пока не сообщается.

Важность проблемы улучшения разрешающей способности в электронной микроскопии, приближение ее к теоретическому пределу стимулировала проведение целого ряда исследований в этой области. Из многочисленных предложений и идей, зачастую остроумных и весьма перспективных, остановимся на идеях, высказанных английским физиком Габором, получивших в последние годы широкое развитие в оптике, радиофизике, акустике, особенно в связи с созданием оптиче­ских квантовых генераторов (лазеров). Речь идет о так называемой голографии, о которой известно сейчас не только специалистам, но и всем тем, кто интересуется новейшими достижениями физики. Вместе с тем не все, наверное, знают, что первые работы Габора по гологра­фии, проведенные еще в «долазерный» период (1948-1951), были поставлены и выполнены именно в связи с задачей повышения разре­шающей способности в электронной микроскопии.

Сущность предлагавшегося метода сводилась к следующему. Монохроматический поток электронов, т.е. поток, содержащий элек­троны с одинаковыми скоростями, освещает объект исследования (по схеме просвечивающего или теневого микроскопа). При этом происхо­дит дифракция электронов на объекте (вспомним волновые свойства электронов!). Обычно в электронном микроскопе пучок, претерпевший дифракцию на объекте, поступает в систему электронных линз, фор­мирующих изображение и обеспечивающих нужное большое увеличение. Однако эти же линзы, как мы уже отмечали, являются ис­точниками трудно устранимых искажений, препятствующих достижению теоретического разрешения. В новом методе предлагалось фиксиро­вать результат дифракции электронов фотографически в виде дифракционной картины и подвергать эту картину последующей обра­ботке с помощью оптических методов, где получение нужных усилений может быть достигнуто с меньшими искажениями. В таком двухступен­чатом процессе получения изображений основное увеличение достигается за счет перехода от «электронных» длин волн к оптиче­ским. При этом следует отметить, что обрабатываемая оптическими методами картина дифракции практически не имеет сходства с объек­том исследования. Однако с помощью светового излучения (видимого) по этой картине в несложном оптическом устройстве можно восстано­вить изображение исследуемого объекта. Для этого источник излучения должен посылать монохроматические когерентные волны, т.е. должен обладать теми свойствами, которые так ярко проявляются у оптических квантовых генераторов.

Заметим, что, образно говоря, в этом двухступенчатом процессе мы фиксируем, «замораживаем» фронт электронных волн и потом вос­производим его вновь в виде фронта световой волны в значительно большем масштабе, используя при этом различие длин волн света и электронов (это соотношение, например, может быть порядка 6000А/0,030А  200000).

В таком «безлинзовом», а потому и не вносящим искажений уве­личении и заключается основное достоинство метода голографии в электронной микроскопии.

К числу новых направлений следует также отнести область мик­роскопии, использующую вместо электронов другие виды микрочастиц, тяжелых по сравнению с электронами. В этом случае дифракционный предел, предсказываемый теорией, смещен в более далекую область малых размеров. Примером такого направления микроскопии является развивающаяся автоионная микроскопия.

В автоионных микроскопах, используемых при исследовании фи­зики поверхностных явлений, главным образом в металлах, оказывается возможным видение отдельных атомов. Методика авто­ионной микроскопии весьма своеобразна; эта область претерпевает бурное развитие.

Как же далеко мы сможем еще продвинуться по пути раскрытия тайн микрообъектов? Мы видим, что за исторически короткий срок, ис­пользуя новейшие достижения физики и радиоэлектроники, электронная микроскопия превратилась в мощное орудие исследова­ния природы. Обозримое будущее этой области науки связано с реализацией дерзновенных проектов создания таких приборов, кото­рые позволят «приблизить» и сделать зримым многообразный и красочный микромир. Далеко не всё ещё ясно на этом пути, на котором постоянно возникают всё более и более сложные научно-технические и технологические проблемы. Современные приборы микроскопии явля­ются несравненно более сложными устройствами, чем микроскопы недавнего прошлого.

Уже сейчас мы сталкиваемся с очевидным фактом: приборы мик­роскопии становятся всё более сложными и громоздкими по мере проникновения в ранее недосягаемые тайны мира малых объектов. Дальнейшее усложнение этих приборов, увеличение затрат на их изго­товление определяются необходимостью разрешения новых всё более сложных проблем.

Здесь уместно провести аналогию с развитием эксперименталь­ной ядерной физики, где получение информации о свойствах микрочастиц вещества, из которых состоят ядра атомов, связано с созданием сложнейших и, как правило, чрезвычайно громоздких и до­рогих приборов и установок.

Получение информации, раскрывающей тайны микромира, опла­чивается высокой ценой. Однако происходящие при этом затраты интеллектуальных и материальных ресурсов, как показывает опыт ис­тории науки, безусловно, окупаются теми возможностями, которые открываются при этом в технике, физике, химии, биологии и медицине.

Литература:


  • Рукман Г.И. , Клименко И.С. Электронная микроскопия. М., Знание, 1968.

  • Савельев И.В. Курс физики, т.3. М., Наука, 1989.

Ðèñóíêè:

1 Напомним, что 1 (ангстрем) = 10e-10 м.

2 В абсолютной системе единиц коэффициент преломления вакуума равен единице.

3 Обратим внимание на то, что масса электрона по данным 1996 г. известна с относительной погрешностью не более 0,00003, а заряд  не более 0,00002.

1   2   3

Похожие:

Дифракция электронов. Электронный микроскоп iconНа уроках химии можно продемонстрировать любую химическую реакцию
Интерактивная доска позволяет сделать урок более эффективным: использую презентации, обучающие программы, видеоролики, на уроках...
Дифракция электронов. Электронный микроскоп iconПредставляемые в доклад президента ран
ГВ/см. Заряд электронов в пучке составил 10 пК, энергия электронов 200 МэВ, ширина энергетического спектра 10%, угловая расходимость...
Дифракция электронов. Электронный микроскоп iconСтоматологический микроскоп: незаменимый инструмент в эндодонтической практике
Сегодня ведущие практикующие стоматологи и исследователи сходятся во мнении, что стоматологический микроскоп в эндодонтии расширил...
Дифракция электронов. Электронный микроскоп iconПрограмма по формированию навыков безопасного поведения на дорогах...
Оборудование – микроскоп, чашки Петри, предметное стекло, покровное стекло, пипетки, пластилин, цветные карандаши, микроскоп с видеокамерой...
Дифракция электронов. Электронный микроскоп iconПрограмма по формированию навыков безопасного поведения на дорогах...
Наименование прорабатываемой на занятиях темы Дифракция. Дифференциальная решетка
Дифракция электронов. Электронный микроскоп iconПрограмма по формированию навыков безопасного поведения на дорогах...
Электронный классный журнал (далее эж) электронный сервис, обеспечивающий учет выполнения учебных программ, успеваемости и посещаемости...
Дифракция электронов. Электронный микроскоп iconПоложение о научном электронном журнале Экономического факультета...
Положение определяет организационно-технологические требования к сетевому электронному научному журналу «Научные исследования экономического...
Дифракция электронов. Электронный микроскоп iconЭлектронный учебник
Вашему вниманию представляется Электронный учебник «История Древней Руси в лицах. Владимир Красное Солнышко» в форме web-сайта, выполненного...
Дифракция электронов. Электронный микроскоп iconМетодические рекомендации учителям по работе с Электронным классным журналом
...
Дифракция электронов. Электронный микроскоп iconРабочая программа электронный документооборот и делопроизводство
Электронный документооборот и делопроизводство / авт сост. Корец В. В. – Спб.: Ивэсэп, 2012
Дифракция электронов. Электронный микроскоп iconПри центральной избирательной комиссии российской федерации электронный дайджест
Электронный дайджест публикаций средств массовой информации по выборной тематике подготовлен на основании открытой информации, размещенной...
Дифракция электронов. Электронный микроскоп iconУрок №27 Рисование на тему: «Богатырские кони»
В кабинете №4 имеется компьютер, проектор, принтер, ксерокс, модульная система экспериментов, цифровой микроскоп
Дифракция электронов. Электронный микроскоп iconТематическое планирование. Биология 6 класс
Знать устройство увеличительных при-боров и правила работы с ними, уметь подготовить микроскоп к работе
Дифракция электронов. Электронный микроскоп iconПрограмма по формированию навыков безопасного поведения на дорогах...
Электронный классный журнал (далее электронный журнал) является государственным нормативно-финансовым документом, и ведение его является...
Дифракция электронов. Электронный микроскоп iconМетодические рекомендации по соблюдению норм и правил пожарной безопасности,...
Школа самоопределения личности [Электронный ресурс]: моу "Гимназия №18". Старый Оскол, 2004
Дифракция электронов. Электронный микроскоп iconElectromotive force and resistance
Как было ранее staled, всегда есть беспорядочное движение свободных электронов во всех веществ, особенно металлы


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск