Правительство Москвы Московский комитет образования Московский городской педагогический университет Юридический факультет





НазваниеПравительство Москвы Московский комитет образования Московский городской педагогический университет Юридический факультет
страница6/30
Дата публикации28.02.2016
Размер3.86 Mb.
ТипТематический план
100-bal.ru > Философия > Тематический план
1   2   3   4   5   6   7   8   9   ...   30

4. Атом – (неделимый), мельчайшая часть химического элемента, сохраняющая его свойства. Состоит из ядра, содержащего протоны и нейтроны (общее название – нуклоны) и электронных оболочек, число электронов в которых равно числу протонов в ядре. Атом в целом электронейтрален, химические свойства его в основном определяются конфигурацией внешних оболочек и количеством электронов на них. Энергетические характеристики орбитальных электронов обладают свойством дискретности и изменяются скачкообразно путем т.н. квантового перехода, посредством поглощения или испускания квантов электромагнитного излучения – фотонов. В первом приближении модель атома можно изобразить в виде сферического образования, весьма условно характеризуемого средним диаметром порядка 10-8 см, причем фактически вся атомная масса сосредоточена в ядре, имеющем размеры порядка 10-13 см.

Атомы всех существующих химических элементов расположены в периодической системе в порядке возрастания их атомных номеров. Выдающийся английский физик Эрнест Резерфорд пришел к планетарной модели атома на основе эксперимента, анализируя распределение траекторий рассеянных альфа-частиц, которыми он бомбардировал атомы мишени. Некоторые частицы вели себя так, будто отражались от ничтожной по размерам, но твердой преграды, большинство других лишь слегка рассеивалось гораздо большей в диаметре, но очень «рыхлой» областью. Интересно то, что еще за семь лет до Резерфорда, в 1904 году известный японский физик Хантаро Нагаока (1865 – 1950) предложил модель атома, построенную по типу планеты Сатурн, согласно которой атом состоит из положительно заряженного ядра, вокруг которого вращается кольцо электронов. Однако эта чисто умозрительная модель, не имея экспериментального обоснования, не произвела в то время впечатления на научное сообщество, хотя сейчас её можно считать предшественницей планетарной модели атома Резерфорда.

Изучение закономерностей внутриструктурного поведения атома показало, во первых, принципиальную ограниченность описательных возможностей ньютоновской классической физики (высшего достижения человеческой мысли с античных времен), а во вторых - тех принципов мышления и аналогий, которые базируются на здравом смысле и предшествующем опыте естествознания. В настоящее время существует несколько моделей атома, отражающих несводимые друг к другу особенности его поведения в различных ситуациях, более адекватно описывающих процессы взаимодействия атомов в вероятностных терминах квантовой механики, но, конечно, не обладающих той наглядностью, которая свойственна более простой и доступной обыденному сознанию, но слишком упрощенной и поверхностной планетарной модели.

Последняя, отражавшая структуру атома в привычных мышлению 19-го века аналогиях, выдвинутая в 1911 году Резерфордом, произвела, тем не менее, переворот в естествознании, хотя являлась очень грубым приближением. Став началом мировоззренческой революции 20-го века, вообще, и послужив мощным импульсом для развития атомной науки, в частности, планетарная модель атома была модернизирована в 1913 году выдающимся датским ученым Нильсом Бором (см.), выдвинувшим для объяснения парадоксальных свойств атома два постулата, основанных на квантовых представлениях и полностью отвергавших традиционные подходы классической физики.

Первый постулат состоит в том, что электроны могут находиться только на т.н. разрешенных орбитах, стационарное состояние которых обеспечивается тем, что электрон неограниченно долго может не излучать энергию и, при отсутствии воздействий извне, не поглощать ее.

Второй постулат утверждает, что при энергетических воздействиях электрон способен поглощать энергию только дискретными порциями – квантами, переходя при этом как бы на более высокую орбиту (возбужденное состояние), откуда он непременно возвращается в основное состояние (квантовый скачок), излучая избыток энергии в виде квантов электромагнитного поля (фотонов). Этот подход позволил упорядочить и объяснить все необъяснимые ранее экспериментальные данные и теоретически предсказать новые необычные свойства атомов, подтвержденные в дальнейшем экспериментально, хотя многие, взятые в качестве знаков из арсенала классической науки термины и понятия, имеют совершенно другие референты в субатомном мире.

Модель атома Резерфорда-Бора и дальнейшее развитие атомной физики по своему революционному влиянию на всю культуру 20-го века сравнимы, пожалуй, только с воздействием на европейское мышление 16-17 веков гелиоцентрической системы Коперника-Кеплера. Эти исследования стали началом следующего за ньютоновской физикой этапа в развитии науки, они привели к появлению новой парадигмы, выходящей далеко за пределы собственно естествознания, и позволили заложить основы нового философского неклассического воззрения на мир как на иерархическую последовательность несводимых друг к другу форм структурной организации материи (микромир, макромир и мегамир), требующих, наряду с традиционными общеметодологическими принципами науки, использования специфических для каждого данного уровня реальности приемов познания и методов интерпретации, а также рационального выбора фундаментальных оснований и логико-семантических ограничений.

Впервые идея об атомном строении вещества была высказана чисто метафизически еще в 4-5 веках до н.э. древнегреческими философами Анаксагором, Левкиппом и Демокритом – «весь мир состоит из атомов, непрерывно движущихся в пустоте». В те же античные времена она была отвергнута Платоном и Аристотелем, которые сводили мир к четырем первоэлементам – земле, воде, воздуху и огню. Атомистическая идея строения материи возродилась веком позже в философии Эпикура, получила поэтическое отражение и дошла до нашего времени в поэме древнеримского поэта Лукреция Кара «О природе вещей». Пережив столетия, она возникла, уже на научных основаниях, в начале 19 века в трудах Джона Дальтона по химии, который доказывал атомистическое строение вещества на основе эмпирического закона кратных отношений масс реагентов, претерпевающих химические превращения. Затем в обновленном виде, начиная с конца 19-го – начала 20-го веков, преодолевая сопротивление даже самых крупных ученых (таких, как Мах и Оствальд), атомистическая идея стала основным концептуальным фундаментом современной физики и химии.

Исследованием закономерностей поведения атомных электронных оболочек (орбиталей) занимается атомная физика, в частности, атомная спектроскопия, позволяющая идентифицировать атомный состав вещества светящихся космических объектов – Солнца, комет, далеких звезд, газопылевых облаков и туманностей и т.п. по спектральным характеристикам электромагнитного излучения, испускаемого возбужденными атомами вещества этих объектов, и ставшая важнейшим подспорьем современной астрофизики и космологии.

Все атомы характеризуются атомной массой и атомным номером. Атомная масса (а.е.м.) – это масса атома химического элемента, выраженная в атомных единицах массы, в качестве которых принята 1/12 часть массы изотопа углерода с массовым числом 12. Приблизительно 1 а.е.м. = 1,66*10-24 г. Атомный номер – это порядковый номер атомов Z (или т.н. зарядовое число) различных химических элементов в периодической системе элементов (например, в таблице Менделеева). Соответствует числу протонов в ядре и, следовательно, - электронов на атомных орбиталях. Последние, согласно модернизированной модели атома Резерфорда-Бора, представляют собой локализованные в соответствующих областях атома облака электронов.

Атомный номер характеризует периодичность химических свойств элементов. Для всех известных на Земле природных элементов величина атомного номера изменяется в пределах от 1 (водород) до 92 (уран). Вместе с массовым числом М (суммой протонов и нейтронов в ядре) атомный номер характеризует химический элемент (как набор изотопов) в периодической системе элементов: символически: МХZ , где Х – соответствующий символ того или иного химического элемента.

Понятие химического элемента ввел в науку в 1661 году английский физик и химик Роберт Бойль (1627 – 1691), который был сторонником атомистической гипотезы и считал, что все тела состоят из более мелких и совершенно одинаковых частиц (атомов). В последние годы методом последовательных ядерных реакций были получены искусственные (т.н. трансурановые, до 114-го включительно) радиоактивные элементы, все из которых, за исключением 92-го (плутоний, альфа-распад, период полураспада 24000 лет), весьма нестабильны и «короткоживущи».

Центральной структурой атома является атомное ядро. Оно состоит из протонов, имеющих положительный электрический заряд, и электронейтральных нейтронов (общее название – нуклоны). Число протонов определяет порядковый номер того или иного химического элемента в периодической таблице Менделеева, различное количество нейтронов в ядре при данном числе протонов обусловливает наличие изотопов у одного и того же химического элемента. При образовании ядра атома из определенного количества нуклонов результирующая масса ядра всегда меньше суммы масс нуклонов, составляющих его, на величину энергии связи, делающей ядра устойчивыми структурами. Согласно теории относительности, эта энергия связана с недостающей массой соотношением E=mc2 (дефект массы, - обнаружен английским физиком Ф.У. Астоном в 1927 г.)., она в миллионы раз превышает энергию связи электронов в атомных оболочках и выделяется при ядерном взрыве или в ядерных реакторах на АЭС из тех ядер, которые способны к реакции деления.

Связь между нуклонами в ядре осуществляется посредством сильного взаимодействия в результате обмена виртуальными мезонами (пи-мезонами или сокращенно пионами). Существует эмпирически найденная зависимость энергии связи нуклонов в ядре от его атомной массы – т.н. кривая Астона (1927 г.), имеющая максимум в районе атома железа (примерно 8,2 Мэв на один нуклон). Энергия связи для атомных ядер изотопов урана, тория или плутония составляет примерно 7 Мэв на нуклон – и эта разница (с учетом атомной массы этих нуклидов - около 200 Мэв на одно ядро) как раз и выделяется при цепной реакции делении ядер в реакторах или бомбах. Пересчет значений энергетического выхода реакции ядерного деления на обычные энергоносители, показывает, что один килограмм урана или плутония выделяет энергию, эквивалентную сжиганию примерно 2000 тонн нефти или взрыву 20000 тонн тротила.

Некоторые конфигурации ядер обладают повышенной устойчивостью и называются магическими, - это те, которые содержат по 2, 8, 20, 28, 50, 82 и 126 нуклонов. Они наиболее распространены в природе и наиболее устойчивы в процессах ядерных превращений. Изотопы химических элементов бывают стабильные и радиоактивные. Последние представлены небольшим количеством реликтовых элементов, среднее время жизни которых соизмеримо с геологическим возрастом Земли (уран-235, уран-238, торий-232, калий-40 и некоторые другие). Все же остальные радиоактивные нуклиды (а их огромное количество), для использования в науке и технике, получают искусственным путем в разнообразных ядерных реакциях.

Ядра с четным числом нуклонов имеют целочисленное и нулевое значения спина, а с нечетным – полуцелое, и проявляют соответствующие магнитные свойства. Будучи квантовомеханическими системами, ядра характеризуются дискретными энергетическими состояниями, - каждый переход из возбужденного в основное состояние сопровождается испусканием гамма-фотона – жесткого электромагнитного излучения соответствующей энергии, представляющей разность между энергиями основного и возбужденного состояний или между энергиями двух соседних уровней при каскадном переходе.

Совокупность возможных энергетических переходов образует спектр ядерного излучения, с характерными линиями для ядер каждого химического элемента. Например, часто используемый в медицинской практике для радиотерапии онкологических заболеваний радиоактивный изотоп кобальт-60 (т.н. кобальтовая пушка), после бета-распада дает дочерний продукт – изотоп никель-60 в возбужденном состоянии, который, переходя в основное, излучает спектр гамма-фотонов двух энергий – 1,17 Мэв и 1,33 Мэв. Используемый в гамма-дефектоскопии материалов изотоп цезий-137 дает после бета-распада в качестве дочернего продукта радиоактивный нуклид барий-137, который переходит в основное состояние, испуская гамма-фотоны с энергией 0,6 Мэв.

Атомное ядро очень сложная система, проявляющая различные, часто противоречивые и даже взаимоисключающие, свойства в процессах, протекающих при различных энергетических условиях. Это отражается и в имеющихся моделях атомного ядра, которые хорошо описывают закономерности поведения ядра в определенных энергетических диапазонах, при выходе за пределы которых «описательная сила» этих моделей резко убывает. Таковы: модель составного ядра (Н. Бор, 1936 г.), гидродинамическая модель ядра (М. Борн, 1936 г.), оболочечная модель (М. Гепперт-Майер, И. Йенсен, 1950 г.), обобщенная модель, как бы примиряющая вторую и третью (О. Бор, Б. Моттельсон, 1953 г.), сверхтекучая модель (те же, 1958 г.) и еще несколько других моделей, все из которых имеют один общий недостаток – необходимость введения значительного количества параметров, которые приходится эмпирически подбирать для обеспечения наилучшего согласования теоретических расчетов с экспериментальными данными.

Тем не менее, вся практика использования ядерной энергии как в мирных, так и в военных целях опирается на существующую и продолжающую активно развиваться в настоящее время теорию атомного ядра. Возможно, что общая непротиворечивая теория атомного ядра будет построена на основе кварковой модели элементарных частиц. (См. также: Ядерный реактор).
5. Большой взрыв, (модель большого взрыва), - современная общепринятая теория происхождения и эволюции Вселенной, суть которой сводится к тому, что вся видимая область космического пространства возникла примерно 15-20 миллиардов лет назад из т.н. «сингулярности» – специфического состояния материи, характеризующегося ядерными размерами и плотностью вещества порядка 1095 г/cм3 (плотность воды = 1 г/см3). Метафора "взрыв", в результате которого видимая часть Вселенной находится в процессе расширения (разбегание галактик), весьма условна и скорее преследует цель наглядности.

С точки зрения современной физики это явление трактуется в терминах квантового перехода из состояния т.н. первичного квантового вакуума через ряд промежуточных форм к состоянию известных на сегодняшний день форм материи – вещества, состоящего из атомов и молекул, субъядерных «элементарных» частиц и некоторых видов полей, достаточно адекватно описываемых современной квантовой механикой. При этом, в отличие от взрыва в привычном понимании, разлетается не вещество и объекты Вселенной из какой-то центральной точки пространства, а как бы «раздувается» само пространство – межгалактические области Вселенной, причем условно выбранным центром для удобства математического описания процесса может быть любая точка пространства, - например, наша планета Земля.

Вопрос об историческом развитии Вселенной возник в 20-е годы нашего века, когда российский ученый А.А. Фридман получил ряд нестационарных решений уравнений общей теории относительности А. Эйнштейна, соответствующих расширению или сжатию пространства. Аналогичные варианты моделей вселенных были также исследованы еще в 1916 году голландцем В. де Ситтером и в 30-х годах французом Ж. Леметром. В 1927 году американский астроном Эдвин Хаббл, зная уже о теории Фридмана и других моделях нестационарной Вселенной, экспериментально установил факт разбегания далеких галактик и предложил формулу зависимости скорости разбегания космических объектов V от расстояния R: V=HR, где H по современным данным равно примерно 20 - 25 км /сек на 1 миллион световых лет (т.н. постоянная Хаббла). Величина, обратная постоянной Хаббла, представляет собой время, в течение которого расширялась Вселенная, т.е. фактически её возраст (по современным данным  13,5 млрд. лет).

Идею типа “Большого взрыва” в первоначальном виде (теория “горячей Вселенной”) выдвинул на основе предшествующих идей Леметра в сороковых годах американский физик русского происхождения Георгий Гамов, предсказав существование следов этого взрыва – т.н. реликтового излучения, открытого в середине 60-х американскими радиоинженерами Пензиасом и Вильсоном (Нобелевская премия). В настоящее время это очень сложная теория, позволяющая удовлетворительно объяснить многие экспериментальные данные и внутренне непротиворечиво, и научно правдоподобно воссоздать историю эволюции Вселенной.

Независимо от того, насколько достоверно эта теория позволяет объяснить некоторые отдельные детали процесса, ее огромное философское значение бесспорно. Созданием этой концепции завершился тысячелетний спор о том, что в мире неизменно, а что подвержено изменениям, в пользу глубокого убеждения, основанного на научных доказательствах, о принципиальной историчности Вселенной и эволюционном пути развития любых сущностей как живой, так и неживой природы в характерном для каждого явления собственном темпоральном мире. Таким образом, не существует в мире ничего неизменного, и само мироздание – Космос, идеал гармонии и порядка древних греков, во все времена считавшийся вечным и неизменным, - является одной из стадий нескончаемого процесса изменения и превращения материи. (См. также: Вселенная, Галактика, Фридман).
1   2   3   4   5   6   7   8   9   ...   30

Похожие:

Правительство Москвы Московский комитет образования Московский городской педагогический университет Юридический факультет iconМосковский городской педагогический университет
Государственное бюджетное образовательное учреждение высшего профессионального образования города Москвы
Правительство Москвы Московский комитет образования Московский городской педагогический университет Юридический факультет iconМосковский городской психолого-педагогический университет
Государственного бюджетного образовательного учреждения высшего профессионального образования города Москвы
Правительство Москвы Московский комитет образования Московский городской педагогический университет Юридический факультет iconУчебно-методический комплекс дисциплины ооп 050100. 62 «Педагогическое образование»
Департамент образования города Москвы Государственное образовательное учреждение высшего профессионального образования города Москвы...
Правительство Москвы Московский комитет образования Московский городской педагогический университет Юридический факультет iconПрограмма вступительных испытаний в магистратуру по направлению 44....
Департамент образования города москвы государственное бюджетное образовательное учреждение высшего профессионального образования...
Правительство Москвы Московский комитет образования Московский городской педагогический университет Юридический факультет iconПовышение эффективности взаимодействия участников учебного процесса
Государственное бюджетное образовательное учреждение высшего профессионального образования города Москвы «Московский городской педагогический...
Правительство Москвы Московский комитет образования Московский городской педагогический университет Юридический факультет iconПрограмма по формированию навыков безопасного поведения на дорогах...
Государственное образовательное учреждение высшего профессионального образования города Москвы «Московский городской педагогический...
Правительство Москвы Московский комитет образования Московский городской педагогический университет Юридический факультет iconМосковская Городская Педагогическая Гимназия-лаборатория» «Московский...
Руководитель – К. Х. Н., доцент кафедры «Органическая химия мгпу» Ройтерштейн Дмитрий Михайлович
Правительство Москвы Московский комитет образования Московский городской педагогический университет Юридический факультет iconМосковский городской психолого-педагогический университет

Правительство Москвы Московский комитет образования Московский городской педагогический университет Юридический факультет iconПрограмма по формированию навыков безопасного поведения на дорогах...
Программа предназначена для поступающих на второй и последующие курсы Педагогического института физической культуры и спорта Государственного...
Правительство Москвы Московский комитет образования Московский городской педагогический университет Юридический факультет icon«московский психолого-социальный университет» юридический факультет утверждаю
Автор-составитель – Вериго Сергей Александрович, кандидат экономических наук, доцент
Правительство Москвы Московский комитет образования Московский городской педагогический университет Юридический факультет iconК детям в образовательном процессе
Международных Педагогических Чтений, руководитель лаборатории гуманной педагогики при гоу впо московский Городской Педагогический...
Правительство Москвы Московский комитет образования Московский городской педагогический университет Юридический факультет iconМосковский городской педагогический университет
Научная специальность: 13. 00. 02 Теория и методика обучения и воспитания (иностранные языки) (педагогические науки)
Правительство Москвы Московский комитет образования Московский городской педагогический университет Юридический факультет iconМосковский городской психолого-педагогический университет Факультет...
Министерством образования и науки Российской Федерации. В 2012-2013 учебном году литературное образование в школе на базовом уровне...
Правительство Москвы Московский комитет образования Московский городской педагогический университет Юридический факультет iconОтчет по исполнению I этапа Государственного контракта №05. 043....
Исполнитель (Поставщик): Государственное бюджетное образовательное учреждение высшего профессионального образования города Москвы...
Правительство Москвы Московский комитет образования Московский городской педагогический университет Юридический факультет iconМосковский государственный университет имени м. В. Ломоносова юридический факультет
...
Правительство Москвы Московский комитет образования Московский городской педагогический университет Юридический факультет iconОтчет по исполнению I этапа Государственного контракта №05. 043....
Исполнитель (Поставщик): Государственное бюджетное образовательное учреждение высшего профессионального образования города Москвы...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск