Сборник тестовых заданий





НазваниеСборник тестовых заданий
страница6/18
Дата публикации10.03.2015
Размер1.84 Mb.
ТипСборник тестов
100-bal.ru > Физика > Сборник тестов
1   2   3   4   5   6   7   8   9   ...   18

ЗАКЛЮЧЕНИЕ


Таким образом, в книге в определенной последовательности даны тестовые задания для самостоятельного решения по таким разделам курса общей физики, как «Физические основы механики», «Молекулярная физика и термодинамика». Особо надо отметить наличие рисунков, поясняющих условия задания.

Организация индивидуальной самостоятельной работы студентов всех форм обучения, предусмотренная настоящим сборником, полностью отвечает основным задачам курса физики: развитию творческого, логического мышления, расширению представлений о многообразии применения физических методов как в процессе обучения, так и в процессе их дальнейшей работы, способствует подготовке к усвоению студентами последующих дисциплин рабочего учебного плана.



Библиографический список


Основной

  1. Полунин, В.М. Физика. Физические основы механики [Текст]: конспект лекций / В.М. Полунин, Г.Т. Сычев; Курск. гос. техн. ун-т. Курск, 2002. 180 с.

  2. Полунин, В.М. Молекулярная физика и термодинамика [Текст]: конспект лекций / В.М. Полунин, Г.Т. Сычев; Курск. гос. техн. ун-т. Курск, 2002. 166 с.

  3. Полунин, В.М. Физика. Основные понятия и законы [Текст]: учеб.-метод. пособие / В.М. Полунин, Г.Т. Сычев; Курск. гос. техн. ун-т. Курск, 2002. 156 с.

  4. Трофимова, Т.И. Курс физики [Текст]: учеб. пособие для вузов / Т.И. Трофимова. 7-е изд., стер. М.: Высш. шк., 2002. 542 с.

  5. Савельев, И.В. Курс общей физики [Текст]: учеб. пособие для втузов: в 5 кн. / И.В. Савельев. М.: Астрель, 2002. Кн. 1. 336 с.

Дополнительный

  1. Полунин, В.М. Сборник тестовых задач по физике [Текст]: в 2 ч. / В.М. Полунин, Г.Т. Сычёв; Курск. гос. техн. ун-т. Курск, 2008. Ч. 1. 323 с.; 4.2. 216 с.

  2. Волькенштейн, В.С. Сборник задач по общему курсу физики [Текст] / В.С. Волькенштейн. Изд. доп. и перераб. СПб.: СпецЛит, 2002. 327 с.

  3. Трофимова, Т.И. Сборник задач по курсу физики для втузов [Текст] / Т.И. Трофимова. 3-е изд. М.: Изд. дом «ОНИКС 21 век», 2003. 384 с.

  4. Чертов, А.Г. Задачник по физике [Текст]: учеб. пособие для втузов / А.Г. Чертов, А.А. Воробьев. 7-е изд., перераб. и доп. М.: Физматлит, 2003. 640 с.



Приложение 1

Физические основы механики. Основные понятия, определения и законы

Кинематика и динамика


Механика – раздел физики, в котором изучается механическое движение, причины, вызывающие это движение, и происходящие при этом взаимодействия между телами.

Механическое движение – изменение с течением времени взаимного положения тел или их частей (частиц) в пространстве.

Кинематика – раздел механики, в котором изучают геометрические свойства движения и взаимодействия тел в не связи с причинами их порождающими.

Физические модели (научные абстракции) классической механики:

1) материальная точка – протяженное тело, размерами которого в условиях данной задачи можно пренебречь, обладающее массой. Понятие применимо при поступательном движении или когда в изучаемом движении можно пренебречь вращением тела вокруг его центра масс;

2) абсолютно твердое тело – тело, расстояние между двумя любыми точками которого в процессе движения остается неизменным. Применимо, когда можно пренебречь деформацией тела;

3) сплошная изменяемая среда – понятие применимо при изучении движения изменяемой среды (деформируемого твердого тела, жидкости, газа), когда можно пренебречь молекулярной структурой среды.

Система единиц измерения физических величин – совокупность основных и производных эталонов. В настоящее время предпочтительной во всех областях науки и техники является система СИ.

В системе СИ единицами измерения являются: 1) основные – единица измерения длины (L) – 1 м; единица измерения массы (M) – 1 кг; единица измерения времени (T) – 1 с; единица измерения температуры (Т) – 1 К; единица измерения силы тока (I) – 1 А; единица измерения силы света (I) – 1 св.; 2) дополнительные – единица измерения плоского угла – 1 рад; единица измерения телесного угла – 1 стерад.

Тело отсчета – произвольно выбранное, условно неподвижное тело, по отношению к которому рассматривается движение данного тела.

Система отсчета – произвольная система координат, связанная с телом отсчета, например: а) прямоугольная, трехмерная система координат, в точке пересечения осей которой помещают тело отсчета; б) полярная система координат, положение материальной точки (тела) в которой задается радиус – вектором r и углами , .

Траектория движения – совокупность последовательных положений материальной точки (тела) в процессе ее движения.

Поступательное движение – движение, при котором тело перемещается параллельно самому себе. При этом все точки тела описывают одинаковые траектории, смещенные относительно друг друга.

Положение материальной точки (тела) в прямоугольной системе отсчета в данный момент времени может быть определено: с помощью координат x, y, z – M(x,y,z); с помощью радиус – вектора r и естественным (траекторным) способом (рис. П1. 1).



Уравнения движения материальной точки (тела) в кинематике:

x = f1(t); y = f2(t); z = f3(t);

rx = f1(t); ry = f2(t); rz = f3(t),

где x, y, z – координаты;

rx, ry, rz – проекции радиуса вектора r на соответствующие оси координат.

Основные понятия и определения кинематики материальной точки и твердого тела, движущегося поступательно:

1) перемещение (рис. П1.2) – вектор r, проведенный из начального положения материальной точки (тела) в положение этой точки в данный момент времени (приращение радиус-вектора за рассматриваемый промежуток времени):

r = r1r2.



2) элементарное перемещение dr – бесконечно малое перемещение, которое с достаточной степенью точности совпадает с соответствующим участком траектории движения. При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории и модуль перемещения численно равен пройденному пути:

r= S;

3) путь – расстояние, пройденное телом при его движении по траектории. В частных случаях перемещение и путь могут совпадать;

4) мгновенная линейная скорость – векторная физическая величина, характеризующая состояние движения, показывающая, как изменяется перемещение в единицу времени, равная первой производной от перемещения по времени:

;

5) средняя скорость неравномерного движенияскалярная физическая величина, численно равная отношению всего пути, пройденного телом (материальной точкой), к тому промежутку времени, в течение которого совершалось движение:

;

6) линейное ускорение – векторная физическая величина, характеризующая изменение скорости в единицу времени, равная первой производной от скорости или второй производной от перемещения по времени:

;

7) тангенциальное ускорение аt – составляющая ускорения, направленная вдоль касательной к траектории движения. Изменяет линейную скорость только по величине:

;

8) нормальное ускорение an – составляющая линейного ускорения, направленная по нормали n к вектору линейной скорости, т.е. к касательной в данной точке:

,

где R – радиус кривизны траектории движения;

n – единичный вектор нормали к траектории движения;

9) полное ускорение a:

.

10) среднее ускорение при неравномерном движении

.

Принцип относительности Галилея (в классической механике) – никакие опыты, проводимые в инерциальных системах отсчета с механическими приборами, не позволяют установить, покоится система отсчета или движется равномерно и прямолинейно по отношению к другой инерциальной системе отсчета. Предполагается, что время не зависит от относительного движения систем отсчета.

Преобразования Галилея определяют положение произвольной материальной точки в двух инерциальных системах отсчета, одна из которых движется со скоростью vo относительно другой (при условии, если направление скорости v0 совпадает с направлением ro):

r = r' + r0 = r' + vot; t = t',

где r и r' – радиус-векторы, определяющие положение материальной точки в неподвижной и подвижной системе отсчета в данный момент времени;

ro – радиус вектор, определяющий положение начала координат системы К' (подвижной) в системе К (неподвижной).

В проекциях на оси координат в произвольный момент времени t положение выбранной точки в системе К можно определить так:

x = x' + v0xt, x' = x – v0xt,

у = у' + vt, у' = у – vt,

z = z' + v0zt, z' = z – v0zt,

t = t'. t = t'.

Ковариантные или инвариантные уравнения – уравнения, обе части которых при переходе от одной системы координат к другой преобразуются одинаково и сохраняют свой вид во всех инерциальных системах отсчета.

Закон сложения скоростей в классической механике:

v = v' + v0.

Относительное расстояние между выбранными точками пространства в системах отсчета определяется соотношением – они абсолютны, т.е. инвариантны:

1) в подвижной:

;

2) в неподвижной:

.

Инварианты преобразований – инвариантные величины (расстояния между телами (точками), промежутки времени между событиями, относительные скорости тел, ускорения).

Вращательное движение твердого тела вокруг неподвижной оси – движение, при котором какие-либо две его точки остаются неподвижными в процессе движения. Прямая, проходящая через эти точки, – ось вращения; все остальные точки твердого тела описывают окружности в плоскостях, перпендикулярных к оси вращения, центры которых лежат на этой оси (рис. П1.3).



Основные кинематические характеристики вращательного движения (рис. П1.4):

1) угол поворота – угол, отсчитанный между двумя последовательными положениями радиуса R;

2) угловая скорость – векторная физическая величина, показывающая, как изменяется угол поворота  в единицу времени, численно равная первой производной от угла поворота по времени. Вектор угловой скорости направлен вдоль оси вращения в сторону, определяемую правилом правого винта:

.



3) угловое ускорение – векторная физическая величина, характеризующая изменение угловой скорости в единицу времени, численно равная первой производной от угловой скорости по времени или второй производной от угла поворота по времени Направление вектора углового ускорения совпадает с направлением вектора угловой скорости в случае ускоренного вращения и противоположно – в случае замедленного:



Период вращения (T) – время, в течение которого тело совершает один полный оборот.

Частота вращения (n) – число оборотов, совершаемых в единицу времени.

Круговая (циклическая) частота ω – число оборотов, совершаемых за время, равное 2π.

Связь между периодом, частотой и круговой частотой:

ω = 2π n = 2π / T; n = 1 / T.

Связь между линейными и угловыми скоростями и ускорениями



Колебательные движения (колебания) – движения или процессы, обладающие повторяемостью во времени.

Гармонические колебания (простейший вид колебаний) – движения, при которых смещение материальной точки (тела) от положения равновесия изменяется по закону синуса или косинуса (рис. П1.5):

x = x0sin (0t + 0),

где x – смещение это удаление материальной точки от положения равновесия в данный момент времени t;

x0 – амплитуда колебаний это максимальное удаление материальной точки от положения равновесия;

(t + 0) – фаза колебаний. Периодически изменяющийся аргумент функции, описывающей колебательный или волновой процесс. Определяет положение материальной точки в данный момент времени t;

0 – начальная фаза колебаний. Определяет положение материальной точки в начальный момент времени t = 0;

 = 2 / T = 2 n – круговая (циклическая) частота колебаний;

T – период колебаний;

n – частота колебаний.



Скорость при гармоническом колебательном движении (колебательная скорость) – физическая величина, которая показывает, как изменяется смещение в единицу времени, численно равная первой производной от смещения по времени:

.

Ускорение при гармоническом колебании – физическая величина, которая показывает, как изменяется скорость в единицу времени, численно равная первой производной от скорости или второй производной от смещения по времени:

.

Знак «минус» означает, что ускорение направлено в сторону, противоположную смещению.

Сложение гармонических колебаний одного направления (рис. П1.6) с одинаковыми амплитудами и частотами (x01 = x02; 1 = 2 = = ), но разными начальными фазами (02  01) проводят аналитически. Уравнение результирующего колебания имеет вид



где – амплитуда результирующего колебания;

– фаза результирующего колебания.



Биения возникают при сложение колебаний одного направления (рис. П1.7), с одинаковыми амплитудами (x02 = x01), начальными фазами 01 = 02 = 0 и круговыми частотами, мало отличающимися друг от друга (1  2). Уравнения таких колебаний имеют вид

x1 = x01sin 1t; x2 = x01sin 2t.



Уравнение результирующего колебания:

,

где – амплитуда результирующего колебания, которая зависит от  = 1 – 2 – разности частот складываемых колебаний;

– смещение результирующего колебания, изменяющееся по гармоническому закону.

Частота и период результирующего колебания:



Частота и период изменения амплитуды в этом случае:



Сложение взаимно перпендикулярных колебаний приводит к тому, что траектория движения представляет собой замкнутые фигуры, называемые фигурами Лиссажу (рис. П1.8):

1) сложение колебаний с одинаковыми частотами (1 = 2 = ), различными амплитудами (x0  y0) с начальными фазами 1 = 2 = 0 – результирующее колебание – гармоническое. Траектория движения – прямая линия, уравнение которой имеет вид

y = (y0/x0)x.



2) сложение колебаний, начальные фазы 1 и 2 которых отличаются на /2 (1 – 2 = /2) – результирующее колебание – гармоническое. Траектория движения – эллипс (при равных амплитудах x0 = y0 – траектория результирующего движения – окружность) с полуосями, равными x0 и y0, уравнение которого

(y/y0)2 + (x/x0)2 = 1;

3) сложение колебаний, периоды которых относятся как целые числа – через промежуток времени, равный наименьшему кратному обоих периодов, движущаяся точка возвращается в начальное положение – получаются фигуры Лиссажу более сложной формы.

Динамика изучает движение и взаимодействия тел совместно с причинами, обусловливающими тот или иной характер движения и взаимодействия.

Основная задача динамики – для данного тела по известной силе найти его ускорение и, наоборот, по известному ускорению найти результирующую силу, действующую на тело.

Масса m – физическая величина, характеризующая количество вещества, инертность, гравитационные свойства и энергию материального тела. Массу тела, определяющую его инертные свойства, называют инертной массой.

Центр масс (или центр инерции) системы – воображаемая точка С, положение которой характеризует распределение массы этой системы и определяется радиус-вектором:

,

где mi и ri – соответственно масса и радиус-вектор i-й материальной точки;

n – число материальных точек в системе.

Скорость центра масс

,

где – полный импульс системы.

Импульс p (количество движения) – физическая величина, описывающая свойства движущихся тел, равная произведению массы на скорость:

p = mv.

Полный импульс системы равен произведению массы системы на скорость ее центра масс:

p = mvc.

Покой – частный случай равномерного прямолинейного движения со скоростью v = 0.

Инерция – свойство тел сохранять состояние покоя или равномерного прямолинейного движения.

Инерциальные системы отсчета – системы отсчета, в которых выполняются первый и второй законы Ньютона (их уравнения и все следствия).

Неинерциальная система отсчета – система отсчета, движущаяся по отношению к инерциальной системе отсчета с ускорением.

Первый закон Ньютона: «Всякое тело находится в состоянии покоя или равномерного прямолинейного движения, пока равнодействующая всех приложенных сил равна нулю».

Сила F – векторная физическая величина, характеризующая воздействие одних тел на другие. В результате действия силы изменяется состояние движения тела (тело приобретает ускорение) или тело деформируется.

Сила F в механике – мера механического действия на данное материальное тело (данную материальную точку) других тел (других материальных точек) или полей.

Закон независимости действия сил: при действии на тело нескольких сил каждая из них сообщает телу такое же ускорение, какое она сообщила, если бы действовала одна.

Принцип суперпозиции сил – допущение, согласно которому результирующий эффект сложного процесса воздействия представляет собой сумму эффектов, вызываемых каждым воздействием в отдельности, при условии, что воздействия взаимно не влияют друг на друга. Он применим к системам, поведение которых описывается линейными соотношениями.

Сложение нескольких сил, действующих одновременно на материальную точку (тело, систему) производится геометрически. Действие нескольких сил можно заменить действием одной силы, которая называется равнодействующей (рис. П1.9):

;

.



Условие равновесия сил:

.

На рисунке П1.10 показано равновесие сил, лежащих в одной плоскости, действующих на материальную точку. Рисунок П1.11 соответствует равновесию сил, не лежащих в одной плоскости, действующих на материальную точку. Две силы, действующие под углом на одну материальную точку, не могут уравновесить друг друга ни при каких условиях.



Так же и три силы, не лежащие в одной плоскости, не могут уравновесить друг друга ни при каких условиях (рис. П 1.12).



Ускорение в динамике a – результат действия силы.

Ускорение материальной точки в инерциальных системах отсчета К и К' одинаково:

; a = a'.

Второй закон Ньютона – изменение импульса пропорционально приложенной силе и направлено вдоль прямой, по которой действует данная сила (основное уравнение движения в классической динамике):

.

При t  0

.

При v << c ускорение, с которым движется тело, прямо пропорционально приложенной силе и обратно пропорционально массе тела:

.

В случае переменной массы


,

где – реактивная сила.

При движении по кривой результирующая сила может быть разложена на две составляющие (рис. П 1.13):

; ,

где R – радиус кривизны траектории;

– тангенциальная составляющая (касательная сила);



– нормальная составляющая (центростремительная сила).

Основной закон классической динамики – инвариантен при переходе от одной инерциальной системы к другой, при этом

ma = F; ma' = F'; F = F'.

Третий закон классической динамики – силы, с которыми взаимодействуют два тела, равны по величине и противоположны по направлению. Силы действия и противодействия приложены к разным телам и никогда не уравновешивают друг друга (рис. П1.14):

F12 = -F21.



Импульс силы – мера действия силы за некоторый промежуток времени:

.

Силы инерции обусловлены ускоренным движением системы отсчета по отношению к неподвижной системе. Различают:

1) силы, действующие на тело при ускоренном поступательном движении системы отсчета (рис. П1.15):

ma = ma + Fин,

где a – ускорение тела в неинерциальной системе отсчета;

a – ускорение тела в инерциальной системе отсчета;

Fин – сила инерции.



2) силы, действующие на тело, покоящееся во вращающейся системе отсчета (рис. П 1.16):

,

где Fц – центробежная сила инерции;

 – угловая скорость вращающейся системы отсчета;

r – радиус-вектор тела относительно начала вращающейся системы отсчета;

R – перпендикулярная к оси вращения составляющая r.



3) силы, действующие на тело, движущееся во вращающейся системе отсчета (рис. П1.17):

Fк = 2m[v ω],

где Fк – сила Кориолиса;

v – скорость движения тела;

 – угловая скорость вращающейся системы отсчета.



Основной закон динамики для неинерциальных систем отсчета:

ma= F + Fин + Fц + Fк,

где F, Fин, Fц, Fк – ранее рассмотренные силы, действующие в неинерциальных системах отсчета.

Основная задача динамики вращательного движения – нахождение угловых ускорений, сообщаемых известными силами.

Момент инерции – скалярная физическая величина, характеризующая инертность тела при вращательном движении.

Момент инерции материальной точки относительно неподвижной оси вращения – физическая величина, равная произведению массы материальной точки на квадрат расстояния до оси или центра вращения (рис. П1.18):

I = mr2.



Момент инерции тела относительно оси z – физическая величина, равная сумме моментов инерции отдельных материальных точек тела относительно той же оси вращения (рис. П1.19):

; ,

где mi – масса i-й точки;

ri – расстояние i-й точки до оси z;

ρ – плотность вещества, из которого состоит тело;

V – объем тела.



Теорема Штейнера – момент инерции тела относительно произвольной оси z равен сумме момента инерции того же тела I0 относительно оси, параллельной данной и проходящей через центр масс, и произведения массы тела m на квадрат расстояния между осями (а):

Iz = I0 + mа2.



На рисунке П1.20 представлено применение теоремы Штейнера к расчету момента инерции диска относительно оси ОО', параллельной оси О1О1'.

Главные оси инерции – три взаимно перпендикулярных свободных оси вращения тела произвольной формы, проходящие через его центр масс.

Момент импульса материальной точки относительно неподвижной оси вращения (L) – векторная физическая величина, модуль которой равен произведению модуля импульса на плечо (рис. П1.21):

L= p.



В векторной форме

L= [rp] = [rmv],

где m – масса материальной точки;

v – скорость материальной точки;

 – плечо (кратчайшее расстояние от направления импульса до оси вращения).

Момент импульса системы относительно неподвижной оси вращения zпроекция на эту ось вектора L (момента импульса системы):

,

где ri, pi – радиус-вектор и импульс i-й материальной точки;

n – общее число точек в системе.

Связь момента импульса тела с вектором угловой скорости ω и моментом инерции

L = Iω.

Момент силы относительно центра вращения или неподвижной оси вращения – векторная физическая величина, модуль которой равен произведению модуля силы на плечо (рис. П1.22):

M=F,

где  – плечо силы – кратчайшее расстояние от линии действия силы до центра вращения.



В векторной форме

M=[rF].

Главный или результирующий момент сил относительно неподвижной оси вращения равен векторной сумме моментов слагаемых сил:

.

Моменты сил относительно осей, которые перпендикулярны и параллельны оси вращения, равны нулю.

Основной закон динамики вращательного движения твердых (недеформирующихся) тел, для которых I=const (второй закон динамики для вращательного движения):

M = I∙ε; .

Импульс вращающего момента – произведение вращающего момента на время его действия:

Mdt = dL.

Осциллятор – физическая система, совершающая колебания; система, у которой величины, описывающие ее, периодически меняются с течением времени.

Гармонический осциллятор – механическая система, совершающая колебания около положения устойчивого равновесия, описывающие величины которой изменяются по гармоническому закону (закону синуса или косинуса).

Уравнение движения гармонического осциллятора:

; ; ,

где a = d2x/dt2 = –ω02x – ускорение материальной точки;

F – возвращающая сила, которая стремится вернуть систему в положение равновесия (F = –mω02x = –kx);

x – смещение;

k = mω02 – коэффициент возвращающей силы. Он численно равен возвращающей силе, вызывающей единичное смещение.

Решение уравнения движения гармонического осциллятора:

x = x0sin (ω0t + φ0).

Уравнение гармонических колебаний в комплексном виде:

.

В теории колебаний принимается, что величина x равна вещественной части комплексного выражения, стоящего в этом выражении справа.

Дифференциальное уравнение гармонического колебательного движения:

.

Решением дифференциального уравнения гармонических колебаний является выражение вида

x = x0 sin (0t + 0),

где k = m 02 – коэффициент возвращающей силы;

x – смещение материальной точки;

x0 – амплитуда колебаний;

0 = 2/Т = 2 – круговая (циклическая частота);

 = 1/T – частота колебаний;

T – период колебаний;

 = (0t + 0) – фаза колебаний;

0 – начальная фаза колебаний.

Примеры гармонических осцилляторов:

а) пружинный маятник – тело массой m (рис. П1.23), подвешенное на пружине, совершающее гармоническое колебание.



Упругие колебания совершаются под действием упругих сил:

F= –k∙,

где k = m o2 – коэффициент жесткости;

 – относительное удлинение.

Уравнение движения пружинного маятника:

; ,

где ;

 – величина деформации.

Решение уравнения движения пружинного маятника:

 = ()0sin (ω0t + φ0).

Круговая частота, частота и период колебаний пружинного маятника:

; ;;

б) физический маятник – твердое тело, совершающее гармоническое колебательное движение относительно оси, не совпадающей с центром масс (рис. П1.24).



Уравнение движения физического маятника:

.

Решение уравнения движения физического маятника:

 = 0sin (ω0t + α),

где α – начальная фаза колебаний.

Круговая частота, частота и период колебаний физического маятника:

; ; ; ,

где L = I/md – приведенная длина физического маятника – длина такого математического маятник, период колебаний которого равен периоду колебаний физического маятника;

I – момент инерции физического маятникa относительно оси колебаний;

m – масса физического маятника;

d – расстояние между осью колебаний и центром масс;

в) математический маятник – тело массой m, размерами которого можно пренебречь, подвешенное на невесомой, нерастяжимой нити (рис. П1.25).

Круговая частота, частота и период колебаний математического маятника:

; ; .

Приведенная длина физического маятника – величина, численно равная длине такого математического маятника, период колебаний которого равен периоду колебаний физического маятника:

.



Крутильные колебания – колебания, совершающиеся под действием закручивающего момента, пропорционального углу закручивания (колебания диска, подвешенного на стальной нити):

M= – D,

где – коэффициент крутильной жесткости;

G – модуль сдвига;

r – радиус нити;

 – длина нити.

Период колебаний крутильного маятника

,

где Iz – момент инерции тела относительно оси колебаний.

Затухающие (свободные) колебания – движения реальной колебательной системы, сопровождающиеся силами трения и сопротивления, которые приводят к уменьшению амплитуды колебаний (рис. П1.26). При этом энергия, потерянная системой, не восполняется за счет внешних сил.



Дифференциальное уравнение затухающих колебаний:

,

где r – коэффициент сопротивления.

Решение уравнения затухающих колебаний:

,

где А = x0 e– βt – амплитуда колебаний, убывающая по экспоненциальному закону;

β = r/(2m) – коэффициент затухания, характеризующий быстроту убывания амплитуды с течением времени;

– собственная частота колебаний системы, т.е. та частота, с которой совершались бы свободные колебания системы в отсутствии сопротивления среды (r = 0).

Круговая частота, частота и период затухающих колебаний:

; ; .

Характеристики затухающих колебаний:

1) декремент затухания – отношение двух смещений, отличающихся друг от друга по времени на период. Декремент затухания характеризует быстроту затухания в зависимости от числа колебаний:

;

2) логарифмический декремент затуханиявеличина, равная натуральному логарифму от декремента затухания. Логарифмический декремент затухания характеризует затухание колебаний за период:

 = lnD = ln(eβΤ) = βT.

Добротность колебательной системы

,

где Ne – число колебаний за то время, за которое амплитуда колебаний уменьшается в «е» раз.

Вынужденные колебания – колебания, совершаемые системами под действием внешней (вынуждающей) силы, изменяющейся по какому-либо закону, например гармоническому (рис. П1.27):

f = F0cos  t,

где F0 – амплитудное значение вынуждающей силы;

 – частота вынуждающей силы.



Дифференциальное уравнение вынужденных колебаний

,

где f = F0 sin t – вынуждающая сила;

 – частота вынуждающей силы.

Решение уравнения вынужденных колебаний:

X = X1 + X2 = x0etsin (ω't + φ0') + x0sin (ωt + φ),

где .

Амплитуда и начальная фаза вынужденных колебаний:

;

.

Резонанс – явление резкого возрастания амплитуды колебаний при некоторой определенной для данной колебательной системы частоте (резонансной частоте). На рисунке П1.28 показаны возможные кривые при резонансе.



Резонансная частота

.
1   2   3   4   5   6   7   8   9   ...   18

Похожие:

Сборник тестовых заданий iconСостав тестовых заданий
Продумайте тематику тестовых заданий всех форм (10) для итогового контроля учебных достижений по выбранной Вами теме. Составьте тест-лестницу...
Сборник тестовых заданий iconМетодические рекомендации по составлению и применению тестовых заданий
Краткая характеристика тестовых заданий, методики их составления и применения для проведения различных видов и способов контроля...
Сборник тестовых заданий iconУчебно-методический комплекс по дисциплине взаимодействие лазерного излучения с веществом
Копия Банка тестовых заданий в формате ast (Основная база тестовых заданий находится на сервере отдела тсо кемГУ)
Сборник тестовых заданий icon«Питание и здоровье»
Тестирование проводится по группам согласно расписанию. На выполнение тестовых заданий студенту дается время от 1 часа до 1 часа...
Сборник тестовых заданий iconИнструкция по проведению тестирования
Тестирование проводится по группам согласно расписанию. На выполнение тестовых заданий студенту дается время от 1 часа до 1 часа...
Сборник тестовых заданий iconТема: Размножение и развитие
Тестирование проводится по группам согласно расписанию. На выполнение тестовых заданий студенту дается время от 1 часа до 1 часа...
Сборник тестовых заданий iconМетодическое пособие «Сборник тестовых заданий по поликлинической терапии»
Государственное бюджетное образовательное учреждение высшего профессионального образования
Сборник тестовых заданий iconУрок с систематизацией знаний и контролем уровня усвоения материала данной темы
Тестирование проводится по группам согласно расписанию. На выполнение тестовых заданий студенту дается время от 1 часа до 1 часа...
Сборник тестовых заданий iconПамятка для преподавателя Челябинск 2009 Даны основные требования...
Предназначается преподавателям, авторам-разработчикам тестовых заданий, а также слушателям сетевых курсов повышения квалификации
Сборник тестовых заданий iconСборник тестовых заданий по дисциплине Финансовые рынки и институты
Собственник сберегательного сертификата решил досрочно предъявить его к оплате. Банк-эмитент
Сборник тестовых заданий iconСборник тестовых заданий для итоговой государственной аттестации...
Примерной образовательной программы основного общего образования, созданной на основе стандарта
Сборник тестовых заданий iconГ. Алексеевки Белгородской области Система разноуровневых тестовых...
А в 2005 году, в связи с проведением на территории Российской Федерации егэ по химии, встал вопрос об использовании разноуровневых...
Сборник тестовых заданий iconМетодические рекомендации для студентов по выполнению тестовых заданий...
Данная работа позволит расширить и углубить знания учащихся, приобретённые в ходе аудиторных занятий по русскому языку с использованием...
Сборник тестовых заданий iconМетодические рекомендации по составлению тестовых заданий для контроля знаний студентов
Методические рекомендации предназначены для всех кафедр и структурных подразделений Южно-Уральского профессионального института....
Сборник тестовых заданий iconМуниципальный смотр конкурс методических и дидактических средств...
Использование тестовых заданий по биологии в разделе "Размножение и индивидуальное развитие организмов"
Сборник тестовых заданий iconСборник тестовых заданий по грамматике по дисциплине «Немецкий язык»
В процессе определения этого базового уровня немаловажную роль должно и может играть тестирование. Система тестов позволит судить...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск