Монстакова Ирина Минеевна, 1 квалификационная категория, моу сош №11, город Североуральск, Свердловская область. Предмет : химия, 10 класс. Тип урок





Скачать 487.9 Kb.
НазваниеМонстакова Ирина Минеевна, 1 квалификационная категория, моу сош №11, город Североуральск, Свердловская область. Предмет : химия, 10 класс. Тип урок
страница3/4
Дата публикации18.09.2013
Размер487.9 Kb.
ТипРазработка урока
100-bal.ru > География > Разработка урока
1   2   3   4

Функции белков


Учитель биологии. Функции белков разнообразны.

1. Строительный материал – белки участвуют в образовании оболочки клетки, органоидов и мембран клетки. Из белков построены кровеносные сосуды, сухожилия, волосы.
2. Каталитическая роль – все клеточные катализаторы – белки (активные центры фермента). Структура активного центра фермента и структура субстрата точно соответствуют друг другу, как ключ и замок.
3. Двигательная функция – сократительные белки вызывают всякое движение.
4. Транспортная функция – белок крови гемоглобин присоединяет кислород и разносит его по всем тканям.
5. Защитная роль – выработка белковых тел и антител для обезвреживания чужеродных веществ.
6. Энергетическая функция – 1 г белка эквивалентен 17,6 кДж.

Содержание белков в различных тканях человека неодинаково. Так, мышцы содержат до 80% белка, селезенка, кровь, легкие – 72%, кожа – 63%, печень – 57%, мозг – 15%, жировая ткань, костная и ткань зубов – 14–28%.
Белки – необходимые компоненты пищевых продуктов, они входят в состав лекарственных препаратов.

Синтез белков


Учитель биологии. Человек в течение длительного времени потреблял белки, выделенные главным образом из растений и животных. В последние десятилетия ведутся работы по искусственному получению белковых веществ. Половина земного шара находится в состоянии белкового голодания, а мировая нехватка пищевого белка составляет около 15 млн т в год при норме потребления белка в сутки взрослым человеком 115 г.
(Демонстрация фрагмента 2-й части кинофильма «Белки, строение белковых молекул» – о сборке молекулы белка.)

Превращения белков в организме




Учительхимии. Выводы. Все белки являются полипептидами, но не всякий полипептид является белком. Каждый белок имеет свое специфическое строение.

Домашнее задание. Рудзитис Г.Е., Фельдман Ф.Г. Химия-11. М.: Просвещение, 1992, с. 18–22.
ЛИТЕРАТУРА

Макареня А.А. Повторим химию. М.: Высшая школа, 1989;
Пособие по химии. Органическая химия для подготовки в учебные заведения медико-биологического профиля. Ростов-на-Дону: Изд-во Ростовского ун-та, 1995;
Колтун М. Мир химии. М.: Детская литература, 1988;
Книга для чтения по органической химии. Сост. П.Ф.Буцкус. М.: Просвещение, 1985;
Чертков И.Н. Эксперимент по полимерам в средней школе. М.: Просвещение, 1971;
Кузовая Т.В., Калякина Е.А. Белки. «Химия» (Издательский дом «Первое сентября»), 2003, № 3,
с. 14;
Беляев Д.К., Воронцов Н.Н., Дымишц Г.М. и др. Общая биология. М.: Просвещение, 1999, 287 с.

Цель: познакомить учащихся с основными компонентами живых клеток – белками.

Задачи:

  1. Раскрыть ведущую роль белков в строении и жизнедеятельности клетки.

  2. Объяснить строение макромолекул белка, имеющих характер информационных биополимеров.

  3. Изучить химические свойства белков.

  4. Углубить знания учащихся о связи строения молекул веществ и их функций на примере белков.

Оборудование: таблицы: “Функции белков”, “Строение белковой молекулы”, “Структура гема”, модель структур молекул белка (можно заменить спирально закрученным эластичным телефонным шнуром или шнуром от бытового электроприбора.); реактивы: растворы NaOH, CuSO4, HNO3, химическая посуда, спиртовка, держатели.

Ход урока

1.Учитель биологии сообщает учащимся цель и задачи, план урока, настраивает их на работу.

Следующий этап – обсуждение понятия жизни, данное Ф.Энгельсом в работе “Антидюринг” и определение значения белков.

II.Учитель биологии. Белки называют также протеинами (греч. Protos – первый, главный). Этим названием выделяется первостепенное значение белков для жизненного процесса. В клетке содержится много органических соединений. После удаления воды, в сухом остатке на 1 месте по содержанию стоят белки. Они составляют 10-20% от сырой массы и 50-80% от сухой массы клетки.

Учитель химии. Многие органические соединения, входящие в состав клетки, характеризуются большими размерами молекул. Как называются такие молекулы?(макромолекулы) Они состоят обычно из повторяющихся сходных по строению низкомолекулярных соединений, связанных между собой ковалентными связями. Их строение можно сравнить с бусинками на нити. Как называются эти составные элементы? (Мономеры). Они образуют полимеры. Большинство полимеров построено из одинаковых мономеров. Такие мономеры называются регулярными. Например, если А – мономер, то –А-А-А-…….А- полимер. Полимеры, в которых мономеры различны по строению, называются нерегулярными. Например, -А-В-Р-П-А-……Г-Р-П-А-. Состав определяет их свойства. Как Вы думаете, к каким полимерам относятся белки?

Белки – нерегулярные полимеры, мономерами которых являются аминокислоты.

(Определение поясняется учителем с помощью списка аминокислот и записывается).

Учитель биологии. В клетке находятся свободные аминокислоты, составляющие аминокислотный фонд, за счет которого происходит синтез новых белков. Этот фонд пополняется аминокислотами, постоянно поступающими в клетку вследствие расщепления белков пищи пищеварительными ферментами или собственных запасных белков. Природных аминокислот –150, в белки входят –20. 8 из них – незаменимые, т.е. они не способны синтезироваться в организме человека, но поступают в него с растительной пищей. Какие же это аминокислоты?

Учитель химии. Это валин, лейцин, изолейцин, треонин, метионин, лизин, фенилаланин, триптофан, иногда в их число включают гистидин и аргинин. (Демонстрация таблицы).

Учитель биологии. Две последние не синтезируются в организме ребенка. Если количество этих аминокислот в пище будет недостаточным, нормальное функционирование и развитие организма человека нарушается. При отдельных заболеваниях организм человека не в состоянии синтезировать и некоторые другие аминокислоты.

Ш. Учитель химии. Каково же строение белка? Чтобы ответить на этот вопрос, давайте вспомним состояние молекулы аминокислоты в растворе?

(Один из учащихся объясняет по таблице строение биполярного иона)

Благодаря такому строению аминокислоты способны соединяться друг с другом, образуя длинные дипептидные цепи, полипептидные молекулы.

В качестве примера давайте запишем образование дипептида – рис.1.

В состав большинства белков входят 300–500 аминокислотных остатков, но есть и более крупные белки, состоящие из 1500 и более аминокислот. Белки различаются и составом аминокислот и числом аминокислотных звеньев, и особенно порядком чередования их в полипептидных цепях. Расчет показывает, что для белка, построенного из 20 различных аминокислот, содержащего в цепи 100 аминокислотных остатков, число возможных вариантов может составить 10130. Многие белки велики и по длине, и по молекулярной массе.

Инсулин –5700

Рибонуклеаза –12700

Альбумин-36000

Гемоглобин-65000

Белки должны быть при такой массе длинными нитями. Но их макромолекулы имеют формулу компактных шаров (глобул) или вытянутых структур (фибрилл).

IV. Уровни организации белковой молекулы.

Учитель биологии. Таким образом, каждый белок имеет очень сложную структуру. Выделяют первичную, вторичную, третичную, четвертичную структуры.

Первичная структура – порядок чередования аминокислот в полипептидной цепи, определенный генотипом. (Определение записывается в тетрадь).

Представим, что перед нами полипептидная цепь (демонстрация эластичного шнура).

После растяжения шнура он вернулся в исходное состояние. Перед нами новая структура в виде спирали. Обратите внимание, на каком расстоянии находятся витки спирали? (На одинаковом).

Учитель химии. Какие силы удерживают молекулу в таком состоянии? Представьте, что наш макет перенесен на таблицу, причем здесь подробно показано химическое строение белковой молекулы. Посмотрите, на разных витках спирали оказались рядом NH и CO. Между ними образовались водородные связи. Они слабые, но их много, за счет этого обеспечивается стабильность вторичной структуры.

Вторичная структура – спираль с одинаковым расстоянием между витками.

Третичная структура – клубок из полипептидной спирали. (Демонстрация клубка из эластичного шнура).

Представить конфигурацию легко, труднее понять, какие силы ее поддерживают. (Водородные связи, дисульфидные мостики –S-S-, сложноэфирная связь между радикалами. Полярные группы COOH и OH взаимодействуют с водой, а неполярные радикалы отталкивают ее, они направлены внутрь глобул. Радикалы взаимодействуют между собой благодаря силам Ван-дер-Ваальса.)

Учитель биологии Четвертичная структура – структура из нескольких полипептидных цепей.

Демонстрация 2 шнуров, закрученных друг относительно друга.

Учитель химии. Демонстрация таблицы “Структура гема”. Пояснение строения молекул гемоглобина.

V. Начиная с вторичной структуры, пространственное строение (конфигурация) макромолекул белка поддерживается в основном слабыми химическими связями. Под влиянием внешних факторов (изменение температуры, солевого состава среды, PH и т.д.) слабые связи, стабилизирующие макромолекулу, рвутся и структура белка, а следовательно его свойства, изменяются.

Процесс утраты белковой молекулой своей структурной организации называется денатурацией. (Определение записывается в тетрадь).

Белок становится нерастворим (пример с куриным яйцом), доступен действию пищеварительных ферментов. Денатурация может быть обратимой и необратимой.

Процесс восстановления структурной организации белковой молекулы называется ренатурацией. (Определение записывается в тетрадь).

Учитель биологии. Ренатурация лежит в основе раздражимости клеток. Так под действием гормонов регулируется действие ферментов, рецепторов, транспортеров и т.д. Иногда денатурация белка имеет определенное значение. Например, паук выделяет капельку секрета и приклеивает ее к какой-нибудь опоре. Затем, продолжая выделять секрет, он слегка натягивает ниточку и этого слабого натяжения достаточно, чтобы белок денатурировался, из растворимой формы перешел в нерастворимую, и нить приобрела прочность.

Учитель химии. Мы рассмотрели одно из основных свойств белков, имеющее глубокий биологический смысл.

Свойства белков (демонстрация опытов, записи в тетрадях).

Для белков характерны реакции с выпадением осадков. В одних случаях полученный осадок при избытке воды вновь растворяется (т.е. происходит ренатурация). Это возможно, если на белок было оказано воздействие слабым раствором спирта, кислоты, солями легких металлов.

Разберем цветные реакции белков.

1. Биуретовая реакция (на обнаружение группы –CONH–). Если к небольшому количеству раствора белка прилить немного NaOH и по каплям добавлять раствор СuSO4, то появляется красно-фиолетовая окраска.

2. Ксантопротеиновая реакция (на бензольные кольца, содержащиеся в некоторых аминокослотах). Под действием концентрированной HNO3 белки окрашиваются в желтый цвет.

3. Реакция с ацетатом свинца (CH3COO)2Pb или Pb(OOCCH3)2. Если к раствору белка прилить раствор ацетата свинца, а затем NaOH и нагреть, то выпадает черный осадок, что указывает на содержание серы.

4. Гидролиз белков (раствор кислоты, щелочи, нагревание). – Рис. 2

VI. Пищевая ценность белков.

Учитель биологии. Так белки проявляют себя при химических реакциях. Так их можно обнаружить. Какова же ценность белков для организма человека?

Сообщение учащегося или учителя биологии. Белок – важный компонент пищи человека. Основные источники пищевого белка: мясо, молоко, продукты переработки зерна, хлеб, рыба, овощи. Напомним Вам, что потребность в белке зависит от возраста, пола, вида деятельности. В организме здорового человека должен быть баланс между количеством поступающих белков и выделяющимися продуктами распада. Для оценки белкового обмена введено понятие белкового баланса. В зрелом возрасте у здорового человека существует азотное равновесие, т.е. количество азота, полученного с белками пищи равно количеству выделяемого азота. В молодом, растущем организме идет накопление белковой массы, поэтому азотный баланс будет положительный, т.е. количество поступающего азота превышает количество выводимого из организма. У людей пожилого возраста, а также при некоторых заболеваниях наблюдается отрицательный азотный баланс. Длительный отрицательный азотный баланс ведет к гибели организма.

Необходимо помнить, что некоторые аминокислоты при тепловой обработке, длительном хранении продуктов могут образовывать неусвояемые организмом соединения, т.е. становиться “недоступными”. Это снижает ценность белка.

Животные и растительные белки усваиваются организмом неодинаково. Если белки молока, молочных продуктов, яиц усваиваются на 96%, мяса и рыбы – на 93–95%, то белки хлеба – на 62–86%, овощей – на 80%, картофеля и некоторых бобовых – на 70%. Однако смесь этих продуктов может быть биологически более полноценной.

На степень усвоения организмом белков оказывает влияние технология получения пищевых продуктов и их кулинарная обработка. При умеренном нагревании пищевых продуктов, особенно растительного происхождения, усвояемость белков несколько возрастает. При интенсивной тепловой обработке усвояемость снижается.

Суточная потребность взрослого человека в белке разного вида 1–1,5 г на 1 кг массы тела, т.е. приблизительно 85–100 г. Доля животных белков должна составлять приблизительно 55% от общего его количества в рационе.

VII. Какие же функции выполняют белки? (Таблица “Функции белков”).

1. Белки участвуют в образовании всех мембранных и немембранных структур клетки, а также внеклеточных структур. У высших животных, например, из белков состоят стенки кровеносных сосудов, сухожилия, хрящи и т.д. Поэтому первая функция строительная (кератин, коллаген).

2. В каждой живой клетке непрерывно происходят сотни биохимических реакций. От чего зависит скорость химических реакций? (От свойств реагирующих веществ, от их концентрации, от температуры). Химическая активность веществ в клетке небольшая, концентрации незначительны, температура клеточной среды невысокая, т.е. реакции в клетке должны протекать медленно. Но это не так. Почему? Подобные результаты достигаются благодаря наличию катализаторов. Клеточные катализаторы называются ферментами. Они ускоряют реакции в миллионы раз. По химической природе почти все ферменты – белки. В последние годы стало известно, что некоторые молекулы РНК имеют свойства ферментов. Представление о том, что ферменты – белки, утвердилось не сразу. Для этого нужно было научиться выделять их в высокоочищенной кристаллической форме. Впервые это сделал Самнер в 1926 году, выделив уреазу – фермент, расщепляющий мочевину. Потребовалось еще 10 лет, в течение которых были получены несколько ферментов в кристаллической форме, чтобы представление о белковой природе этих веществ стало доказанным и получило всеобщее признание.

Каждая молекула фермента способна осуществить от нескольких тысяч до нескольких миллионов операций в минуту. Известно более 2000 ферментов и количество их продолжает увеличиваться. Каталитическая активность характеризуется определенным участком – активным центром. Благодаря определенной пространственной структуре молекулы белка и определенному расположению аминокислот в нем фермент узнает свой субстрат, присоединяет его и ускоряет его превращение. В белковой молекуле есть участки, которые узнают еще и конечный продукт, сходящий с биологического конвейера. Если такого продукта слишком много, то активность самого начального фермента тормозится им, и наоборот, если продукта слишком мало, то фермент активируется. Это обратные связи, которые обеспечивают процессы саморегуляции. Такие принципы лежат в основе современной техники, в создании автоматических устройств. Подобные же принципы используются во многих природных механизмах, в живой клетке. Таким образом, 2 функция – каталитическая.

1. Кроме 2 названных, важна сигнальная функция. В поверхностную мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды. Так происходит прием сигналов из внешней среды и передача команд в клетку.

2. Движение, как известно, одно из проявлений жизненной активности. Все виды движений, к которым способны клетки у высших животных, в том числе и сокращение мышц, а также мерцание ресничек, движения жгутиков выполняют особые сократительные белки (актин, миозин и др.). 4 функция – двигательная.

3. В крови, в наружных клеточных мембранах, в цитоплазме, ядре клетки есть различные транспортные белки. Так белок крови гемоглобин присоединяет кислород и разносит его по всем тканям и органам.

4. Большое значение имеет защитная функция белков. При введении чужеродных белков или клеток в организм в нем происходит выработка особых белков, которые связывают и обезвреживают чужеродные клетки и вещества. В лимфоидных тканях (лимфатические железы, селезенка, вилочковая железа) производятся клетки-лимфоциты, способные синтезировать огромное разнообразие защитных белков антител. Такие антитела носят название иммуноглобулинов. Их молекулы имеют участок, узнающий “пришельца” и участок осуществляющий “расправу” с ним. Самое удивительное то, что лимфоциты способны ответить синтезом соответствующих антител на любой антиген, с которым клетка и организм даже никогда не встречались. В клетках человека и животных синтезируются также специальные противовирусные белки – интерфероны. Синтез таких белков начинается после встречи клетки с вирусной нуклеиновой кислотой. Он блокирует аппарат синтеза вирусных белков.

5. Регуляторная функция связана с регуляторами физиологических процессов – гормонами. Многие из них также по природе своей белки. Гормоны роста, адренокортикотропный, тиреотропный гормоны, инсулин, глюкагон и другие являются белками. Успехи в области генной инженерии привели к тому, что многие из числа гормонов-белков производятся уже в больших количествах как исключительно важные лекарственные средства. Для лечения больных сахарным диабетом получают инсулин из поджелудочной железы животных. Поскольку бычий инсулин несколько отличается по первичной структуре от человеческого, то не все больные переносят его. Синтез человеческого инсулина генно-инженерными методами открыл новые возможности для лечения таких больных.

7. Еще одна функция белков, вытекающая из анализа уровней структурной организации белков – энергетическая. При распаде 1 г белка до конечных продуктов выделяется около 17 кДж энергии. Однако белки используются, как источник энергии обычно, когда истощаются иные источники, такие как углеводы и жиры. Таким образом, мы рассмотрели значение белков, некоторые их функции.

VIII. Итак, мы познакомились сегодня со значением белков для клетки, организма человека в целом, поговорили о химических свойствах и биологических функциях белков. Давайте вспомним наиболее важные понятия и термины этой темы. Придумайте соответствующие вопросы к терминам на доске:

1. Протеины.

2. Пептидная связь.

3.Незаменимые аминокислоты.

4. Первичная структура белка.

5. Вторичная структура белка.

6. Третичная структура белка.

7. Четвертичная структура белка.

8. Белки.

9. Денатурация.

10. Ренатурация.

Учащиеся работают в парах.


Урок 4. Белки – основа жизни









Белки – это биологические полимеры, состоящие из аминокислот. Ни один из существующих живых организмов – от вирусов до растений и животных – не может существовать без белка. Правда, у растений имеются особые возбудители болезней – вироиды, состоящие из одной нуклеиновой кислоты, однако для их размножения необходимы белки растительной клетки-хозяина.

Белки выполняют в организме множество жизненно важных функций.

Структурная функция

Структурную функцию выполняет, например, белок кератин, из которого состоят шерсть, рога, копыта, верхний отмерший слой кожи. В зависимости от числа поперечных сшивок, скрепляющих белковые молекулы, кератиновые структуры бывают довольно мягкими и гибкими (волосы), а бывают чрезвычайно жесткими и прочными (панцирь черепахи).

В сухожилиях содержится белок коллаген, его фибриллы почти не поддаются растяжению. Благодаря этому мышечное усилие передается костям, к которым крепятся мышцы. При кипячении в воде коллаген образует желатину, часто применяющуюся для приготовления студней и желе. Белок эластин, наоборот, не слишком прочен, но очень эластичен, он содержится в стенках сосудов, легко растягивающихся при увеличении давления.

Белки выполняют структурную функцию не только на организменном, но и на клеточном уровне – в любой эукариотической клетке есть состоящий из белков внутренний цитоскелет. Различают три различных цитоскелетных системы: микротрубочки, микрофиламенты и промежуточные филаменты.

Микротрубочки представляют собой трубчатые образования, состоящие из белка тубулина. По ним, как по рельсам, движутся органеллы от одного участка клетки к другому (другие белки прикрепляют органеллы к наружной стороне «трубы» и обеспечивают движение). Во время митоза они обеспечивают расхождение хромосом к полюсам клетки.























Рис. 1. Слева – строение микротрубочки, справа – цитоскелет, образованный микротрубочками, в клетке соединительной ткани – фибробласте. Микротрубочки окрашены зеленым, ядро – голубым

Микрофиламенты состоят из белка актина. Они образуют сплошную сеть под наружной мембраной клетки, придавая ей упругость и прочность. Пучки микрофиламентов образуются на переднем конце движущейся амебы (и любой клетки с амебоидным движением), именно они выпячивают ложноножку (псевдоподию).























Рис. 2. Слева – строение микрофиламента, справа – цитоскелет, образованный микрофиламентами, в фибробласте. Микрофиламенты окрашены желтым

Промежуточные филаменты в разных клетках состоят из различных белков. В эпителиальных клетках они состоят из кератина, так что волосы представляют собой остатки мертвых ороговевших клеток. По-видимому, эти филаменты просто придают механическую прочность клетке.

Каталитическая функция

Катализатор – это вещество, которое ускоряет реакцию, оставаясь в конце ее неизменным (не расходуясь). Биологические катализаторы называются ферментами, а вещества, участвующие в самой реакции, – субстратами. Почти все ферменты – это белки. В живой клетке может содержаться около 1000 ферментов.

Для живой клетки весьма ценны такие особенности работы ферментов по сравнению с обычными «химическими» катализаторами, как специфичность, высокая эффективность и регулируемость.

Обычно один фермент узнает только «свой» субстрат и ускоряет одну определенную реакцию. Правда, в некоторых случаях специфичность нужна лишь в определенных пределах – так, многие протеазы расщепляют любую пептидную связь белкового субстрата, они неспецифичны к аминокислотным остаткам, составляющим эту связь. Однако они не расщепляют связи между остатками моносахаридов.

Большинство ферментов значительно превосходят по каталитической активности неорганические и простые органические катализаторы. Для эффективной работы небиологических катализаторов, как правило, нужна высокая температура, тогда как в организме человека все ферменты обходятся температурой около 37 °С (а у холоднокровных животных – и более низкой).

Еще одно ценное свойство ферментов – это регулируемость, т. е. способность «включаться» и «выключаться». Это относится не ко всем ферментам, некоторые и не надо регулировать.

Однако у ферментов есть и недостатки. Так, они не выдерживают высокой температуры – теряют свою каталитическую активность из-за денатурации (впрочем, у разных белков различная устойчивость к температурным воздействиям – у бактерий-термофилов белки нормально работают при 100 °С).

Многие ферменты нуждаются для своей работы в наличии небольших небелковых соединений – коферментов. Они часто образуются из витаминов – почти все витамины группы В являются предшественниками коферментов. Некоторые коферменты прочно связаны со своими ферментами, тогда как другие легко отделяются от одного белка и присоединяются к другому.

Некоторые ферменты активны только тогда, когда связываются с ионами металлов – магния, марганца, цинка, железа, меди и др.

Двигательная функция

Все известные способы движения живых организмов основаны на работе соответствующих белков. Так, сокращение мышц обеспечивают мышечные белки актин и миозин. В поперечно-полосатых мышцах имеются пучки актиновых и миозиновых нитей, которые называются тонкими и толстыми филаментами. При возбуждении мышцы эти филаменты начинают скользить друг по другу. Толстые филаменты как бы втягиваются в пространство между тонкими, в результате чего мышца сокращается (энергию для такого направленного скольжения дает АТФ).



Рис. 3. Скольжение актиновых и миозиновых нитей вызывает мышечное сокращение

Они же делают возможным ползание амебы. На переднем конце амебоидной клетки растут актиновые филаменты, они выпячивают наружную мембрану, образуя ложноножку. Затем ложноножка прикрепляется к поверхности, по которой ползет амеба. Наконец, с помощью миозина вся клетка подтягивается к прикрепленной ложноножке, и процесс повторяется снова.

Другие белки обеспечивают подвижность жгутиков. По окружности жгутика эукариотических клеток располагаются микротрубочки, связанные друг с другом с помощью белка динеина. Этот белок как бы пытается заставить скользить одну микротрубочку по другой (вспомните скольжение нитей при мышечном сокращении). Но микротрубочки скреплены друг с другом специальными белками, поэтому они не могут свободно скользить друг по другу, а могут лишь изгибаться. Этот изгиб распространяется по всему жгутику, он начинает биться как хлыст, вызывая движение всей клетки. Динеин работает на энергии АТФ.



Рис. 4. Механизм движения жгутика эукариотических клеток

Транспортная функция

Классический пример транспортного белка – это гемоглобин крови, который переносит кислород по кровяному руслу (он участвует и в транспорте углекислого газа). Имеются специальные белки, переносящие по организму различные вещества: ионы железа (белок трансферрин), витамин В12 (транскобаламин), жирные кислоты (сывороточный альбумин), стероидные гормоны и т. п.

Специальные белки служат и для транспорта разных веществ через мембрану. Глюкоза является гидрофильным соединением и очень плохо проникает через липидный бислой, поэтому на мембранах различных клеток имеется специальный белок – переносчик глюкозы. Хотя бислой проницаем для воды, все же на мембране есть белки–аквапорины, ускоряющие прохождение воды через нее. Некоторые аквапорины специфично транспортируют только воду, другие могут переносить еще и разные небольшие нейтральные молекулы (глицерин, мочевину).

Питательная или энергетическая функция

Белки можно расщепить, окислить и получить энергию, необходимую для жизни. При окислении 1 г белка выделяется около 4,1 килокалории. Обычно белки идут на энергетические нужды организма человека в крайних случаях, когда исчерпаны запасы жиров и углеводов.

В яйцеклетках содержатся специальные запасные белки (например, яичный альбумин). Когда начинается развитие нового организма из оплодотворенного яйца, они расщепляются и используются как «строительный материал» для синтеза новых белков, а также как источник энергии. Запасные белки содержатся и в семенах растений.

Защитная функция

В крови и других жидкостях содержатся белки, которые могут убивать или помогать обезвреживать микробов. В состав плазмы крови входят антитела – белки, каждый из которых узнает определенный вид микроорганизмов или иных чужеродных агентов, – а также защитные белки системы комплемента. Существует несколько классов антител (эти белки еще называют иммуноглобулинами), самый распространенный из них – иммуноглобулин G. В слюне и в слезах содержится белок лизоцим – фермент, расщепляющий муреин и разрушающий клеточные стенки бактерий. При заражении вирусом клетки животных выделяют белок интерферон, препятствующий размножению вируса и образованию новых вирусных частиц.

Защитную функцию для микроорганизмов выполняют и такие неприятные для нас белки, как микробные токсины – холерный токсин, токсин ботулизма, дифтерийный токсин и т. п. Повреждая клетки нашего организма, они защищают микробов от нас.

Рецепторная функция

Белки служат для восприятия и передачи сигналов. В физиологии есть понятие клетки-рецептора, т. е. клетки, которая воспринимает определенный сигнал (например, в сетчатке глаза находятся клетки-зрительные рецепторы). Но в клетках-рецепторах эту работу осуществляют белки–рецепторы. Так, белок родопсин, содержащийся в сетчатке глаза, улавливает кванты света, после чего в клетках сетчатки начинается каскад событий, который приводит к возникновению нервного импульса и передаче сигнала в мозг.

Белки-рецепторы есть не только в клетках-рецепторах, но и в других клетках. Очень важную роль в организме играют гормоны – вещества, выделяемые одними клетками и регулирующие функцию других клеток. Гормоны связываются со специальными белками – рецепторами гормонов на поверхности или внутри клеток-мишеней.

Регуляторная функция

Многие (хотя и далеко не все) гормоны являются белками – например, все гормоны гипофиза и гипоталамуса, инсулин и др. Еще одним примером белков, выполняющих эту функцию, могут служить внутриклеточные белки, регулирующие работу генов.

 

Многие белки могут выполнять несколько функций.

Макромолекулы белков состоят из α-аминокислот. Если в состав полисахаридов обычно входит одна и та же «единица» (иногда две), повторяющаяся много раз, то белки синтезируются из 20 разных аминокислот. После того, как молекула белка собрана, некоторые аминокислотные остатки в составе белка могут подвергаться химическим изменениям, так что в «зрелых» белках можно обнаружить более 30 различных аминокислотных остатков. Такое разнообразие мономеров обеспечивает и многообразие биологических функций, выполняемых белками.

α-аминокислоты имеют следующее строение:























здесь R – различные группы атомов (радикалы) у разных аминокислот. Ближайший к карбоксильной группе атом углерода обозначается греческой буквой α, именно с этим атомом соединена аминогруппа в молекулах α-аминокислот.

В нейтральной среде аминогруппа проявляет слабые основные свойства и присоединяет ион Н+, а карбоксильная – слабо кислотные и диссоциирует с освобождением этого иона, так что хотя в целом суммарный заряд молекулы не изменится, она будет одновременно нести положительно и отрицательно заряженную группу.

В зависимости от природы радикала R различают гидрофобные (неполярные), гидрофильные (полярные), кислые и щелочные аминокислоты.




Рис. 5. Формулы 20 аминокислот

У кислых аминокислот имеется вторая карбоксильная группа. Она немного сильнее карбоксильной группы уксусной кислоты: у аспарагиновой кислоты половина карбоксилов диссоциирована при рН 3,86, у глютаминовой – при рН 4,25, а у уксусной – лишь при 4,8. Среди щелочных аминокислот самой сильной является аргинин: половина его боковых радикалов сохраняет положительный заряд при рН 11,5. У лизина боковой радикал является типичным первичным амином, он остается наполовину ионизированным при рН 9,4. Самая слабая из щелочных аминокислот – гистидин, его имидазольное кольцо наполовину протонировано при рН 6.

Среди гидрофильных (полярных) также имеются две аминокислоты, способные ионизироваться при физиологических рН – цистеин, у которого SH-группа может отдавать ион Н+ подобно сероводороду, и тирозин, у которого есть слабокислая фенольная группировка. Однако эта способность выражена у них очень слабо: при рН 7 цистеин ионизирован на 8 %, а тирозин – на 0,01 %.

Для обнаружения α-аминокислот обычно используют нингидриновую реакцию: при взаимодействии аминокислоты с нингидрином образуется ярко окрашенный синий продукт. Кроме того, отдельные аминокислоты дают свои специфические качественные реакции. Так, ароматические аминокислоты дают желтое окрашивание с азотной кислотой (в ходе реакции происходит нитрование ароматического кольца). При подщелачивании среды окраска изменяется на оранжевую (подобное изменение окраски происходит и у индикаторов, например, метилоранжа). Эта реакция под названием ксантопротеиновой используется также для детекции белка, поскольку в большинстве белков есть ароматические аминокислоты; желатин не дает этой реакции, поскольку почти не содержит ни тирозина, ни фенилаланина, ни триптофана. При нагревании с плюмбитом натрия Na2PbO2 цистеин образует черный осадок сульфида свинца PbS.

Растения и многие микробы могут синтезировать аминокислоты из простых неорганических веществ. Животные могут синтезировать лишь некоторые аминокислоты, другие же должны получать с пищей. Такие аминокислоты называются незаменимыми. Для человека незаменимыми являются фенилаланин, триптофан, треонин, метионин, лизин, лейцин, изолейцин, гистидин, валин и аргинин. К сожалению, злаковые культуры содержат очень мало лизина и триптофана, зато эти аминокислоты в существенно большем количестве содержатся в бобовых культурах. Не случайно традиционные диеты земледельческих народов обычно содержат как злаки, так и бобовые: пшеница (или рожь) и горох, рис и соя, кукуруза и бобы являются классическими примерами такого сочетания у народов разных континентов.

α-Атом углерода у всех 20 аминокислот находится в состоянии sp3-гибридизации. Все его 4 связи расположены под углом около 109°, так что формулу аминокислоты можно вписать в тетраэдр.






Рис. 6. Оптические изомеры аминокислот

Легко убедиться, что могут существовать два вида аминокислот, которые являются зеркальными отображениями друг друга. Как бы мы ни перемещали и ни поворачивали их в пространстве, совместить их невозможно – они различаются как правая и левая рука.

Такой вид изомерии называется оптической изомерией. Он возможен только в том случае, если у центрального атома углерода (он называется асимметрическим центром) со всех 4 сторон находятся разные группы (поэтому глицин не имеет оптических изомеров, а остальные 19 аминокислот имеют). Из двух разных изомерных форм аминокислот ту, что на рис. 1 расположена справа, называют D-формой, а слева – L-формой.

Основные физические и химические свойства D- и L-изомеров аминокислот одинаковы, однако различаются оптические свойства: их растворы вращают плоскость поляризации света в противоположные стороны. Различна и скорость их реакций с другими оптически активными соединениями.

Интересно, что в состав белков всех живых организмов от вирусов до человека входят только L-аминокислоты. D-формы встречаются в некоторых антибиотиках, синтезируемых грибами и бактериями. Белки могут образовывать упорядоченную структуру лишь в том случае, если в их состав будут входить только изомеры аминокислот одного типа.

 

Краткое содержание урока

Важнейшими биологическими полимерами являются белки, они являются необходимыми компонентами любой живой клетки. Белки состоят из остатков аминокислот, соединенных пептидной связью. Среди 20 аминокислот, из которых синтезируются белки, имеются щелочные, кислые, гидрофильные и гидрофобные. Белки выполняют следующие функции: структурную, каталитическую, двигательную, транспортную, питательную, защитную, рецепторную, регуляторную.






1   2   3   4

Похожие:

Монстакова Ирина Минеевна, 1 квалификационная категория, моу сош №11, город Североуральск, Свердловская область. Предмет : химия, 10 класс. Тип урок iconКоннова Ольга Васильевна /учитель физики моу сош №6, высшая квалификационная...
Метадическая разработка интегрированного урока с использованием возможностей интерактивной доски
Монстакова Ирина Минеевна, 1 квалификационная категория, моу сош №11, город Североуральск, Свердловская область. Предмет : химия, 10 класс. Тип урок iconДоклад о деятельности моу сош №19
Адрес: 624140, Свердловская область, город Кировград, улица 40 лет Октября, дом 8а
Монстакова Ирина Минеевна, 1 квалификационная категория, моу сош №11, город Североуральск, Свердловская область. Предмет : химия, 10 класс. Тип урок iconПубличный доклад моу средняя общеобразовательная школа №9 Асбестовский...
Асбестовское муниципальное общеобразовательное учреждение средняя общеобразовательная школа №9 функционирует с 1978 года по адресу:...
Монстакова Ирина Минеевна, 1 квалификационная категория, моу сош №11, город Североуральск, Свердловская область. Предмет : химия, 10 класс. Тип урок iconПрограмма одобрена Утверждаю на заседании педагогического Директор моу ксош№4
Автор: Парунина Ирина Владимировна, учитель русского языка и литературы моу ксош №4, I квалификационная категория
Монстакова Ирина Минеевна, 1 квалификационная категория, моу сош №11, город Североуральск, Свердловская область. Предмет : химия, 10 класс. Тип урок iconПрограмма одобрена Утверждаю на заседании педагогического Директор моу ксош№4
Автор: Парунина Ирина Владимировна, учитель русского языка и литературы моу ксош №4, I квалификационная категория
Монстакова Ирина Минеевна, 1 квалификационная категория, моу сош №11, город Североуральск, Свердловская область. Предмет : химия, 10 класс. Тип урок iconПубличный доклад моу коменская сош за 2007-2008 уч год Общие сведения...
Юридический адрес: 623502, Свердловская область, Богдановичский район, село Коменки, улица зо лет Победы, 14
Монстакова Ирина Минеевна, 1 квалификационная категория, моу сош №11, город Североуральск, Свердловская область. Предмет : химия, 10 класс. Тип урок iconСыртланов Юрий Наилович, имеющаяся высшая категория и подтверждаемая...
Данные об учителе: Сыртланов Юрий Наилович, имеющаяся высшая категория и подтверждаемая высшая категория, моу сош №50, Устиновского...
Монстакова Ирина Минеевна, 1 квалификационная категория, моу сош №11, город Североуральск, Свердловская область. Предмет : химия, 10 класс. Тип урок iconКонспект урока. Учитель: Шарапова Лариса Игоревна класс: 7 предмет:...
Тип урока: урок обучения умениям и навыкам с использованием цифровых образовательных ресурсов
Монстакова Ирина Минеевна, 1 квалификационная категория, моу сош №11, город Североуральск, Свердловская область. Предмет : химия, 10 класс. Тип урок iconЧелышева Ирина Анатольевна моу оленинская средняя общеобразовательная...
Один ученик читает предложения из упражнения №82, другой заполняет таблицу, начатую на предыдущем уроке, спроецированную на интерактивную...
Монстакова Ирина Минеевна, 1 квалификационная категория, моу сош №11, город Североуральск, Свердловская область. Предмет : химия, 10 класс. Тип урок iconПубличный отчет об образовательной и финансово-хозяйственной деятельности...
Показатели по субъекту Российской Федерации Свердловская область / Городской округ Богданович / моу байновская средняя общеобразовательная...
Монстакова Ирина Минеевна, 1 квалификационная категория, моу сош №11, город Североуральск, Свердловская область. Предмет : химия, 10 класс. Тип урок iconУрок по 45 минут. Класс: 10 класс
Автор: Балацкая Ирина Ивановна – учитель географии моу «сош №33 имени Героя России Н. Смирнова»
Монстакова Ирина Минеевна, 1 квалификационная категория, моу сош №11, город Североуральск, Свердловская область. Предмет : химия, 10 класс. Тип урок iconАнализ работы мо учителей русского языка и литературы за 2009 2010 учебный год
Варданян Н. А. (высшая квалификационная категория), Якуничева О. В. (первая квалификационная категория), Хренова Е. Ф. и Горшихина...
Монстакова Ирина Минеевна, 1 квалификационная категория, моу сош №11, город Североуральск, Свердловская область. Предмет : химия, 10 класс. Тип урок iconМоу голубинской сош на 2011-2012 учебный год
Учебник: Химия. Неорганическая химия. Органическая химия. 9 класс.: учеб для общеобразоват учреждений
Монстакова Ирина Минеевна, 1 квалификационная категория, моу сош №11, город Североуральск, Свердловская область. Предмет : химия, 10 класс. Тип урок iconСинергетический подход в формировании семейных ценностей у младших школьников
Автор: Ценных св., учитель начальных классов, I квалификационная категория, моу круглоподполенская сош
Монстакова Ирина Минеевна, 1 квалификационная категория, моу сош №11, город Североуральск, Свердловская область. Предмет : химия, 10 класс. Тип урок iconПрограмма по формированию навыков безопасного поведения на дорогах...
Составитель: Фёдорова Е. В., учитель начальных классов моу «сош №9», I квалификационная категория
Монстакова Ирина Минеевна, 1 квалификационная категория, моу сош №11, город Североуральск, Свердловская область. Предмет : химия, 10 класс. Тип урок iconУрок английского языка в 4 классе Тема: «be healthy»
Николаева Ирина Владиславовна, педагог-психолог моу сош №14,Осипова Нина Сергеевна, учитель английского языка высшей категории,г....


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск