Основная образовательная программа подготовки специалиста по специальности 050102. 00 «Биология»





НазваниеОсновная образовательная программа подготовки специалиста по специальности 050102. 00 «Биология»
страница6/8
Дата публикации27.02.2015
Размер1.56 Mb.
ТипОсновная образовательная программа
100-bal.ru > Математика > Основная образовательная программа
1   2   3   4   5   6   7   8

Смещенной называют оценку, математическое ожидание которой не равно оцениваемому параметру.

Однако несмещенность не является достаточным условием хорошего приближения к истин-ному значению оцениваемого параметра. Если при этом возможные значения Θ* могут значительно отклоняться от среднего значения, то есть дисперсия Θ* велика, то значение, найденное по данным одной выборки, может значительно отличаться от оцениваемого параметра. Следовательно, требуется наложить ограничения на дисперсию.
Определение 9.2. Статистическая оценка называется эффективной, если она при заданном объеме выборки п имеет наименьшую возможную дисперсию.

При рассмотрении выборок большого объема к статистическим оценкам предъявляется еще и требование состоятельности.
Определение 9.3. Состоятельной называется статистическая оценка, которая при п→∞ стре-мится по вероятности к оцениваемому параметру (если эта оценка несмещенная, то она будет состоятельной, если при п→∞ ее дисперсия стремится к 0).

Убедимся, что представляет собой несмещенную оценку математического ожидания М(Х).

Будем рассматривать как случайную величину, а х1, х2,…, хп, то есть значения исследуемой случайной величины, составляющие выборку, – как независимые, одинаково распределенные случайные величины Х1, Х2,…, Хп, имеющие математическое ожидание а. Из свойств математического ожидания следует, что



Но, поскольку каждая из величин Х1, Х2,…, Хп имеет такое же распределение, что и генеральная совокупность, а = М(Х), то есть М( ) = М(Х), что и требовалось доказать. Выборочное среднее является не только несмещенной, но и состоятельной оценкой математического ожидания. Если предположить, что Х1, Х2,…, Хп имеют ограниченные дисперсии, то из теоремы Чебышева следует, что их среднее арифметическое, то есть , при увеличении п стремится по вероятности к математическому ожиданию а каждой их величин, то есть к М(Х). Следовательно, выборочное среднее есть состоятельная оценка математического ожидания.

В отличие от выборочного среднего, выборочная дисперсия является смещенной оценкой дисперсии генеральной совокупности. Можно доказать, что

, (9.2.)

где DГ – истинное значение дисперсии генеральной совокупности. Можно предложить другую оценку дисперсии – исправленную дисперсию sІ, вычисляемую по формуле

. (9.3)

Такая оценка будет являться несмещенной. Ей соответствует исправленное среднее квадратическое отклонение

. (9.4)
При выборке малого объема точечная оценка может значительно отличаться от оцениваемого параметра, что приводит к грубым ошибкам. Поэтому в таком случае лучше пользоваться интервальными оценками, то есть указывать интервал, в который с заданной вероятностью попадает истинное значение оцениваемого параметра. Разумеется, чем меньше длина этого интервала, тем точнее оценка параметра. Поэтому, если для оценки Θ* некоторого параметра Θ справедливо неравенство | Θ* - Θ | < δ, число δ > 0 характеризует точность оценки ( чем меньше δ, тем точнее оценка). Но статистические методы позволяют говорить только о том, что это неравенство выполняется с некоторой вероятностью.
Определение 9. 4. Надежностью (доверительной вероятностью) оценки Θ* параметра Θ называется вероятность γ того, что выполняется неравенство | Θ* - Θ | < δ. Если заменить это неравенство двойным неравенством – δ < Θ* - Θ < δ, то получим:

p ( Θ* - δ < Θ < Θ* + δ ) = γ.

Таким образом, γ есть вероятность того, что Θ попадает в интервал ( Θ* - δ, Θ* + δ).
Определение 9.5. Доверительным называется интервал, в который попадает неизвестный параметр с заданной надежностью γ.
1. Доверительный интервал для оценки математического ожидания нормального распределения при известной дисперсии.

Пусть исследуемая случайная величина Х распределена по нормальному закону с известным средним квадратическим σ, и требуется по значению выборочного среднего оценить ее математическое ожидание а. Будем рассматривать выборочное среднее как случайную величину а значения вариант выборки х1, х2,…, хп как одинаково распределенные независимые случайные величины Х1, Х2,…, Хп, каждая из которых имеет математическое ожидание а и среднее квадратическое отклонение σ. При этом М( ) = а, (используем свойства математического ожидания и дисперсии суммы независимых случайных величин). Оценим вероятность выполнения неравенства . Применим формулу для вероятности попадания нормально распределенной случайной величины в заданный интервал:

р ( ) = 2Ф . Тогда , с учетом того, что , р ( ) = 2Ф =

=2Ф( t ), где . Отсюда , и предыдущее равенство можно переписать так:

. (9.5)

Итак, значение математического ожидания а с вероятностью (надежностью) γ попадает в интервал , где значение t определяется из таблиц для функции Лапласа так, чтобы выполнялось равенство 2Ф(t) = γ.
Пример. Найдем доверительный интервал для математического ожидания нормально распреде-ленной случайной величины, если объем выборки п = 49, σ = 1,4, а доверительная вероятность γ = 0,9.

Определим t, при котором Ф(t) = 0,9:2 = 0,45: t = 1,645. Тогда

, или 2,471 < a < 3,129. Найден доверительный интервал, в который попадает а с надежностью 0,9.
2. Доверительный интервал для оценки математического ожидания нормального распределения при неизвестной дисперсии.

Если известно, что исследуемая случайная величина Х распределена по нормальному закону с неизвестным средним квадратическим отклонением, то доверительный интервал для ее математического ожидания имеет вид .

где - выборочное среднее, s – исправленная дисперсия, п – объем выборки.

Таким образом, получен доверительный интервал для а, где tγ можно найти по соответствующей таблице при заданных п и γ.
Пример. Пусть объем выборки п = 25, = 3, s = 1,5. Найдем доверительный интервал для а при γ = 0,99. Из таблицы находим, что tγ (п = 25, γ = 0,99) = 2,797. Тогда , или 2,161< a < 3,839 – доверительный интервал, в который попадает а с вероятностью 0,99.
3. Доверительный интервал для оценки среднего квадратического отклонения нормального распределения имеет вид

.

Замечание. Если q > 1, то с учетом условия σ > 0 доверительный интервал для σ будет иметь границы

.

Пример.

Пусть п = 20, s = 1,3. Найдем доверительный интервал для σ при заданной надежности γ = 0,95. Из соответствующей таблицы находим q (n = 20, γ = 0,95 ) = 0,37. Следовательно, границы доверительного интервала: 1,3(1-0,37) = 0,819 и 1,3(1+0,37) = 1,781. Итак, 0,819 < σ < 1,781 с вероятностью 0,95.
Лекция 6. Элементы теории корреляции. Нахождение выборочных уравнений прямых линий регрессии по несгруппированным данным и по корреляционной таблице.
Рассмотрим выборку двумерной случайной величины (Х, Y) . Примем в качестве оценок условных математических ожиданий компонент их условные средние значения, а именно: условным средним назовем среднее арифметическое наблюдавшихся значений Y, соответствующих Х = х. Аналогично условное среднее - среднее арифметическое наблюдавшихся значений Х, соответствующих Y = y. Уравнения регрессии Y на Х и Х на Y

имеют вид :

= f*(x) -

- выборочное уравнение регрессии Y на Х,

= φ*(у) -

- выборочное уравнение регрессии Х на Y.

Соответственно функции f*(x) и φ*(у) называются выборочной регрессией Y на Х и Х на Y , а их графики – выборочными линиями регрессии. Выясним, как определять параметры выборочных уравнений регрессии, если сам вид этих уравнений известен.

Пусть изучается двумерная случайная величина (Х, Y), и получена выборка из п пар чисел (х1, у1), (х2, у2),…, (хп, уп). Будем искать параметры прямой линии регрессии Y на Х вида

Y = ρyxx + b , (10.1)

подбирая параметры ρух и b так, чтобы точки на плоскости с координатами (х1, у1), (х2, у2), …, (хп, уп) лежали как можно ближе к прямой (10.1). Используем для этого метод наименьших квадратов и найдем минимум функции

. (10.2)

Приравняем нулю соответствующие частные производные:

.

В результате получим систему двух линейных уравнений относительно ρ и b:

. (10.3)

Ее решение позволяет найти искомые параметры в виде:

. (10.4)

При этом предполагалось, что все значения Х и Y наблюдались по одному разу.
Теперь рассмотрим случай, когда имеется достаточно большая выборка (не менее 50 значений), и данные сгруппированы в виде корреляционной таблицы:

Y Xx1x2xknyy1

y2



ymn11

n12



n1mn21

n22



n2m





nk1

nk2



nkmn11+n21+…+nk1

n12+n22+…+nk2

……………..

n1m+n2m+…+nkmnxn11+n12+…+n1mn21+n22+…+n2mnk1+nk2+…+nkmn=nx =ny

Здесь nij – число появлений в выборке пары чисел (xi, yj).

Поскольку , заменим в системе (10.3)

, где пху – число появлений пары чисел (х, у). Тогда система (10.3) примет вид:

. (10.5)

Можно решить эту систему и найти параметры ρух и b, определяющие выборочное уравнение прямой линии регрессии:

.

Но чаще уравнение регрессии записывают в ином виде, вводя выборочный коэффициент корреляции. Выразим b из второго уравнения системы (10.5):

.

Подставим это выражение в уравнение регрессии: . Из (10.4)

, (10.6)

где Введем понятие выборочного коэффициента корреляции



и умножим равенство (4.12) на : , откуда . Используя это соотношение, получим выборочное уравнение прямой линии регрессии Y на Х вида

. (10.7)


Лекция 7.

Статистическая проверка статистических гипотез. Общие принципы проверки гипотез. Понятия статистической гипотезы (простой и сложной), нулевой и конкурирующей гипотезы, ошибок первого и второго рода, уровня значимости, статистического критерия, критической области, области принятия гипотезы. Наблюдаемое значение критерия. Критические точки. Мощность критерия. Критерии для проверки гипотезы о вероятности события.
Определение 11.1. Статистической гипотезой называют гипотезу о виде неизвестного распределения генеральной совокупности или о параметрах известных распределений.

Определение 11.2. Нулевой (основной) называют выдвинутую гипотезу Н0. Конкурирую-щей (альтернативной) называют гипотезу Н1, которая противоречит нулевой.
Пример. Пусть Н0 заключается в том, что математическое ожидание генеральной совокупности а = 3. Тогда возможные варианты Н1: а) а ≠ 3; б) а > 3; в) а < 3.
Определение 11.3. Простой называют гипотезу, содержащую только одно предположение, сложной – гипотезу, состоящую из конечного или бесконечного числа простых гипотез.
Пример. Для показательного распределения гипотеза Н0: λ = 2 – простая, Н0: λ > 2 – сложная, состоящая из бесконечного числа простых ( вида λ = с, где с – любое число, большее 2).
В результате проверки правильности выдвинутой нулевой гипотезы ( такая проверка называется статистической, так как производится с применением методов математичес-кой статистики) возможны ошибки двух видов: ошибка первого рода, состоящая в том, что будет отвергнута правильная нулевая гипотеза, и ошибка второго рода, заключаю-щаяся в том, что будет принята неверная гипотеза.

Замечание. Какая из ошибок является на практике более опасной, зависит от конкретной задачи. Например, если проверяется правильность выбора метода лечения больного, то ошибка первого рода означает отказ от правильной методики, что может замедлить лече-ние, а ошибка второго рода (применение неправильной методики) чревата ухудшением состояния больного и является более опасной.
Определение 11.4. Вероятность ошибки первого рода называется уровнем значимости α.
Основной прием проверки статистических гипотез заключается в том, что по имеющейся выборке вычисляется значение некоторой случайной величины, имеющей известный закон распределения.
Определение 11.5. Статистическим критерием называется случайная величина К с известным законом распределения, служащая для проверки нулевой гипотезы.
Определение 11.6. Критической областью называют область значений критерия, при которых нулевую гипотезу отвергают, областью принятия гипотезы – область значений критерия, при которых гипотезу принимают.
Итак, процесс проверки гипотезы состоит из следующих этапов:

  1. выбирается статистический критерий К;

  2. вычисляется его наблюдаемое значение Кнабл по имеющейся выборке;

  3. поскольку закон распределения К известен, определяется (по известному уровню значимости α) критическое значение kкр, разделяющее критическую область и область принятия гипотезы (например, если р(К > kкр) = α, то справа от kкр распо-лагается критическая область, а слева – область принятия гипотезы);

  4. если вычисленное значение Кнабл попадает в область принятия гипотезы, то нулевая гипотеза принимается, если в критическую область – нулевая гипотеза отвергается.



Различают разные виды критических областей:

- правостороннюю критическую область, определяемую неравенством K > kкр ( kкр > 0);

- левостороннюю критическую область, определяемую неравенством K < kкр ( kкр < 0);

- двустороннюю критическую область, определяемую неравенствами K < k1, K > k2 (k2 > k1).
Определение 11.7. Мощностью критерия называют вероятность попадания критерия в критическую область при условии, что верна конкурирующая гипотеза.

Если обозначить вероятность ошибки второго рода (принятия неправильной нулевой гипотезы) β, то мощность критерия равна 1 – β. Следовательно, чем больше мощность критерия, тем меньше вероятность совершить ошибку второго рода. Поэтому после выбора уровня значимости следует строить критическую область так, чтобы мощность критерия была максимальной.
1   2   3   4   5   6   7   8

Похожие:

Основная образовательная программа подготовки специалиста по специальности 050102. 00 «Биология» iconОсновная образовательная программа подготовки специалиста по специальности...
Автор программы: Н. В. Василевская – доктор биологических наук, профессор кафедры биологии и химии мгпу
Основная образовательная программа подготовки специалиста по специальности 050102. 00 «Биология» iconУчебно-методический комплекс дисциплины сд. 14 Биологическая химия...
Основная образовательная программа подготовки специалиста по специальности (специальностям)
Основная образовательная программа подготовки специалиста по специальности 050102. 00 «Биология» iconУчебно-методический комплекс дисциплины фтд основы фитодизайна основная...
Основная образовательная программа подготовки специалиста по специальности (специальностям)
Основная образовательная программа подготовки специалиста по специальности 050102. 00 «Биология» iconУчебно-методический комплекс дисциплины ен. Ф. 04. Общая химия основная...
Основная образовательная программа подготовки специалиста по специальности (специальностям)
Основная образовательная программа подготовки специалиста по специальности 050102. 00 «Биология» iconУчебно-методический комплекс дисциплины сд. 11, Сд. Ф. 11 Зоология...
Основная образовательная программа подготовки специалиста по специальности (специальностям)
Основная образовательная программа подготовки специалиста по специальности 050102. 00 «Биология» iconУчебно-методический комплекс дисциплины дс. 5 Экология почв основная...
Основная образовательная программа подготовки специалиста по специальности (специальностям)
Основная образовательная программа подготовки специалиста по специальности 050102. 00 «Биология» iconУчебно-методический комплекс дисциплины сд. 14, Сд. Ф. 14 Биологическая...
Основная образовательная программа подготовки специалиста по специальности (специальностям)
Основная образовательная программа подготовки специалиста по специальности 050102. 00 «Биология» iconУчебно-методический комплекс дисциплины сд. Ф ботаника с основами...
Основная образовательная программа подготовки специалиста по специальности (специальностям)
Основная образовательная программа подготовки специалиста по специальности 050102. 00 «Биология» iconОсновная образовательная программа подготовки специалиста по специальности...
Автор программы: доктор биологических наук, профессор кафедры биологии и химии мгпу н. В. Василевская
Основная образовательная программа подготовки специалиста по специальности 050102. 00 «Биология» iconУчебно-методический комплекс дисциплины гсэ. В устойчивое развитие...
Основная образовательная программа подготовки специалиста по специальности (специальностям)
Основная образовательная программа подготовки специалиста по специальности 050102. 00 «Биология» iconОсновная образовательная программа подготовки специалиста по специальности...
Основное содержание профессиональной деятельности учителя составляет общение с учащимися. В процессе взаимодействия с воспитанниками...
Основная образовательная программа подготовки специалиста по специальности 050102. 00 «Биология» iconУчебно-методический комплекс дисциплины сд. 8, Сд. Ф. 8 Анатомия...
«Биология с дополнительной специальностью География» 050103. 00 «География с дополнительной специальностью Биология»
Основная образовательная программа подготовки специалиста по специальности 050102. 00 «Биология» iconУчебно-методический комплекс дисциплины фтд. 4, Сд. В микология основная...
Основная образовательная программа подготовки специалиста по специальности (специальностям)
Основная образовательная программа подготовки специалиста по специальности 050102. 00 «Биология» iconУчебно-методический комплекс дисциплины сд. В 2 анатомия и морфология...
Рецензенты: д б н., профессор кафедры биологии и химии Н. В. Василевская, к б н., зав отделом морских млекопитающих и птиц ммби кнц...
Основная образовательная программа подготовки специалиста по специальности 050102. 00 «Биология» iconУчебно-методический комплекс дисциплины нормативно-правовое обеспечение...
Константинова Наталья Ивановна, к п н., доцент, директор филиала чоу впо биэпп в г. Мурманске
Основная образовательная программа подготовки специалиста по специальности 050102. 00 «Биология» iconУчебно-методический комплекс дисциплины сд. 26 Тепличное растениеводство...
Чтобы продлить жизнь растениям в зимнее время, сохранить декоративные растения тропиков и субтропиков, первые теплицы появились в...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск