Учебное пособие по дисциплине «Математическое моделирование и теория принятия решений»





НазваниеУчебное пособие по дисциплине «Математическое моделирование и теория принятия решений»
страница3/8
Дата публикации03.04.2015
Размер1.12 Mb.
ТипУчебное пособие
100-bal.ru > Математика > Учебное пособие
1   2   3   4   5   6   7   8

Раздел № 2


Принятие решений в условиях многокритериальности

  1. Экспертные оценки при принятии решений




    1. Понятие об экспертизах


Многие проблемы различных сфер человеческой деятельности не поддаются формализации путем прямого использования определенных количественных соотношений. Тем не менее, часто проблемы такого типа чрезвычайно важны и от их решения зависит выбор стратегии развития политических, экономических, социальных, военных и др. систем различного иерархического уровня.

Как уже отмечалось, принципиально ЛПР может получить необходимую для принятия решения информацию, воспользовавшись всего тремя источниками:

  • личными знаниями, опытом и интуицией;

  • чужим опытом, анализируя эмпирические данные;

  • советами специалистов – экспертов.

Однако при решении действительно сложных, комплексных проблем, особенно в условиях неопределенности и неполноты информации, часто единственным способом определиться в сложной ситуации оказывается способ анализа, базирующийся на экспертном оценивании.

Идея экспертного оценивания состоит в том, что для получения необходимой новой информации из имеющейся исходной привлекаются компетентные в данной области люди — эксперты, которые проводят интуитивно-логический анализ какого-либо вопроса с целью вынесения по нему суждения. Суждения экспертов определенным образом обрабатываются с использованием специальных математических процедур. В результате получают так называемые экспертные оценки.

По-существу, все многообразие решаемых экспертами задач сводится к двум: построению (синтезу) каких-то неизвестных в настоящее время объектов и к оцениванию характеристик (анализу) представленных им объектов.

Построение объектов предполагает формулировку целей, условий и способов проведения операции, формирование модели цели операции, определение характеристик для описания свойств объектов и их взаимосвязей и т.п. При оценивании характеристик элементов эксперты проводят измерение важности целей, приоритетов, предпочтений, возможностей наступления тех или иных событий и т.п.

Важно иметь в виду, что экспертная оценка не является решением. Это лишь информация, необходимая или помогающая ЛПР выработать обоснованное решение.

В общем случае предпочтения ЛПР могут не совпадать с предпочтениями экспертов. Однако суждения экспертов, их советы помогают ЛПР критически осмыслить различные точки зрения, уточнить или изменить свою систему предпочтений и тем самым уменьшить вероятность принятия решений, неадекватных ситуации.

Обращение к экспертам можно рассматривать как проведение своеобразного эксперимента, позволяющего учитывать и использовать при выборе решения коллективный опыт и знания экспертов. Неформальные процедуры выбора решения, базирующиеся на привлечении экспертов, называют экспертизами.

Экспертизы классифицируются на простые и сложные. Рассмотрим вначале понятие простой экспертизы.

Для простых экспертиз характерно, что каждый из экспертов способен дать окончательный и официальный ответ на поставленный вопрос. При этом считается, что эксперт достаточно компетентен для того, чтобы используя его мнение, можно было принять определенное решение. Ответ эксперта на поставленный вопрос называется экспертной оценкой. Экспертная оценка может быть дана в качественной или в количественной форме. Порядок проведения простой экспертизы может быть различным и зависит от характера решаемой проблемы. В некоторых случаях экспертиза может осуществляться в виде дискуссии (например, при проведении медицинского консилиума в случае диагностирования заболевания, при отыскании проектных решений и т.п.), в других же дискуссия не допускается. Характерным примером использования дискуссий при проведении экспертиз служит экспертиза при выработке решений, определяющих экономическую стратегию и тактику фирм или предприятий в условиях конкуренции. При этом не следует опасаться противодействия или даже негативного отношения экспертов к возможным решениям (альтернативам) и к оценке их последствий. Более того, обоснование решения может быть эффективным лишь при наличии и при учете противодействия.

Часто чрезвычайно эффективными при решении сложных многоаспектных проблем являются экспертизы, осуществляемые в форме «мозгового штурма». Обычно экспертизы в виде «мозгового штурма» применяются тогда, когда обычные, лежащие на поверхности решения являются неэффективными и требуются нестандартные, неочевидные подходы. Экспертиза в виде «мозгового штурма» осуществляется в два этапа. На первом эксперты выступают в роли «генераторов идей». Выдвигаемые идеи на данном этапе не обсуждаются и не оцениваются. Необходимо, чтобы генерация идей не ограничивалась какими-либо факторами (например, критическими замечаниями). Фиксируются абсолютно все, даже самые фантастические, идеи. На втором этапе осуществляется анализ предложений, а также оценка их реализуемости и эффективности. На данном этапе возможно использование как тех же экспертов, принимавших участие в генерации идей, так и привлечение новых.

Выбор той или иной формы проведения экспертизы зависит от характера решаемой проблемы, стиля работы ЛПР, а также ряда других факторов.

Следует отметить, что при экспертизах могут использоваться различные процедуры голосования. В частности, возможно голосование:

  • в целом (списком), или по каждому обсуждаемому вопросу в отдельности;

  • в несколько этапов (при этом сначала путем «мягкого», или рейтингового, голосования определяется порядок обсуждения вопросов, а затем проводится собственно голосование.

Решение может приниматься простым или квалифицированным (не менее 2/3) большинством. Возможно также применение «права вето», когда решение принимается при согласии с ним всех участников голосования.

Следует отметить, что встречаются ситуации (например в научно-технической сфере), когда мнение одного эксперта может быть более ценным и правильным, чем мнение всех остальных, так как иногда наилучшими являются решения, принятые не на основании накопленного опыта, а вопреки ему.

Кратко охарактеризуем сложные экспертизы.

В ряде случаев простые экспертизы не дают результата из-за того, что не удается подобрать экспертов, способных дать обоснованные ответы на поставленные перед ними вопросы. При этом часто неэффективность простой экспертизы связана не с некомпетентностью экспертов, а обусловлена чрезвычайной сложностью проблемы и принципиальной невозможностью найти экспертов, оценки которых можно было бы использовать при выборе решения. Например, просто невозможно на данном этапе развития науки и техники предсказать, хотя бы ориентировочно, дату ввода в действие термоядерных электростанций, начало добычи полезных ископаемых на других планетах Солнечной системы, создание эффективно функционирующего электрического автомобильного двигателя, способного конкурировать с традиционным двигателем внутреннего сгорания, и т.д. и т.п. Между тем от ответов на вопросы подобного типа зависят, в частности, размеры инвестиций в соответствующие отрасли науки, промышленности, образования.

В большинстве случаев решение сложных проблем не может быть получено в рамках простых экспертиз. Сложные экспертизы, использующие специальные процедуры экспертного исследования, базируются на расчленении (декомпозиции) сложной проблемы на ряд более простых, исследование которых позволяют проводить опыт и квалификация экспертов. По каждой частной проблеме проводится простая экспертиза, а затем, после соответствующей обработки полученных на первом этапе экспертных оценок формируются выводы по проблеме в целом.

Успех сложной экспертизы во многом определяется тем, каким образом осуществлена декомпозиция сложной проблемы на составляющие. Следует отметить, что в настоящий момент отсутствуют универсальные подходы к решению данной проблемы, в связи с чем все определяется характером исходной проблемы, надлежащим подбором специалистов, привлекаемых к ее решению, и множеством других факторов, влияние которых редко можно учесть заранее.

    1. Экспертное оценивание важности объектов


Очень часто в процессе экспертизы суждение экспертов представляется в количественной форме (в виде чисел). Примерами могут служить оценка качества изделия в некоторой шкале (например, десятибальной), оценка уровня мастерства спортсменов на соревнованиях и т.п. Важно, что в экспертизах с количественными оценками необходима определенная математическая обработка экспертных оценок, например, выставление среднего балла. Иногда в целях защиты от возможной некомпетентности или предвзятости экспертов используется более сложная обработка – например, отбрасывание наибольшей и наименьшей оценок и расчет среднего балла по оставшимся оценкам. В данном разделе мы рассмотрим некоторые вычислительные процедуры обработки экспертных оценок при определении важности некоторых объектов. В качестве объектов такого рода могут, например, рассматриваться показатели эффективности в многокритериальных задачах выбора решений.
      1. Усреднение экспертных оценок


Пусть экспертам необходимо сравнить S объектов. Предположим, что существует набор чисел , характеризующих истинные значения важности исследуемых объектов. При этом предполагается, что наиболее важному объекту соответствует наибольшее по величине число из набора , а наименее важному – наименьшее. Естественно, числа неизвестны экспертам и ЛПР. При оценке важности объектов абсолютные значения чисел не имеют значения и ранжирование объектов по важности определяются относительными величинами чисел совокупности . В связи с этим, будем считать, что






Пусть важность объектов оценивают n экспертов. Обозначим через оценку важности i-го объекта (i=1,2,...,S) , данную j-м экспертом (j=1,2,...,n) . Полученные оценки представим в виде матрицы



(3.1),

в которой число строк соответствует числу объектов, а число столбцов — числу экспертов. Поскольку оценки важности одного и того же объекта, полученные от разных экспертов, могут не совпадать (числа в строках, вообще говоря, различны), то возникает задача определения показателей важности , представляющих собой усредненное мнение всех n экспертов.

Определение значений по матрице A можно осуществить, выбирая в качестве меры близости между и элементами соответствующей строки среднеквадратическую



(3.2).

Величины выбираются таким образом, чтобы среднее квадратическое отклонение было минимальным. При этом необходимо обеспечить, чтобы удовлетворяли условию нормировки






В результате усредненные показатели важности рассчитываются по формулам вида:



(3.3).

Таким образом, относительные оценки важности объектов вычисляются как среднеарифметические оценок, выставленных всеми экспертами. Отметим, что полученный результат является простейшим и применяется в тех случаях, когда ЛПР уверено в одинаковой компетентности и объективности экспертов.

Если у ЛПР нет уверенности в равном уровне компетентности экспертов, то применяется более сложная процедура обработки экспертных оценок. Вводятся коэффициенты компетентности экспертов , отвечающие условиям:



(3.4).

При этом формула (3.3) обобщается и принимает вид



(3.5).

Представим последнее равенство в матричной форме. Для этого введем векторы-столбцы

,




где верхний символ T обозначает операцию транспонирования. В результате формула (3.5) примет следующий вид:



(3.6).

Если компетентность экспертов известна, то расчет усредненных оценок важности следует производить по формулам (3.5) или (3.6). Очевидно, в случае одинаковой компетентности экспертов формула (3.5) сводится к (3.3).

Более сложным (и реалистическим) является случай, когда коэффициенты компетентности неизвестны и подлежат определению. Обычно в этом случае используется рекуррентный метод расчета с использованием матрицы экспертных оценок A, который мы кратко опишем ниже.

Обозначим через вектор коэффициентов компетентности на k-м шаге вычислений (k=1,2,3,...). Примем, что на первом шаге






Для k-го шага оказываются справедливыми соотношения



(3.7),



(3.8),

где — нормирующий множитель, вычисляемый из условия

.




Подставляя (3.7) в (3.8) получим более удобное для использования соотношение



(3.9),

где квадратная симметрическая матрица B называется матрицей взаимосвязи экспертных оценок и определяется равенством



(3.9),
      1. Метод анализа иерархий


Метод анализа иерархий, разработанный под руководством американского специалиста по исследованию операций Т. Саати, применяется в настоящее время при решении самых разнообразных проблем, среди которых, в частности:

  • Проектирование транспортных систем крупных городов;

  • Разработка планов обеспечения энергетическими ресурсами отраслей промышленности;

  • Оценка сценария развития высшего образования;

  • Определение приоритетных направлений научных исследований;

  • Прогнозирование цен на различную продукцию;

  • Планирование развития фирм;

  • Аттестация персонала учреждений и предприятий;

  • Решение эколого-экономических проблем регионов;

  • Проектирование сложных технических систем.

Развитие идеи декомпозиции приводит к необходимости разработки и освоения такой концепции исследования сложных проблем, которая базировалась бы на их структурировании, упорядочении конкурирующих решений на основе оценки степени влияния всех выявленных структурных элементов: показателей эффективности, ограничений, возможных решений и т.п. Эта концепция должна органически включать человека в процесс исследования, учитывать в возможно более полном объеме роль человеческого фактора, примирять многочисленные и подчас противоречивые устремления людей, чьи интересы затрагивают те или иные решения.

В общем случае иерархия определяет расположение некоторых объектов (элементов иерархии) в порядке от высшего к низшему, от старшего к младшему по степени подчиненности.

Существуют различные разновидности иерархий. Простейшими и наиболее распространенными являются доминантные иерархии, схематически изображаемые в виде древовидной структуры (Рис. 3.1).


Рис. 3.1. Схематическое изображение доминантной иерархии.

Доминантная иерархия называется полной, если любой ее элемент какого-либо уровня связан со всеми элементами подчиненного ему нижнего уровня. В противном случае иерархия является неполной.

Если иерархия включает k уровней, то она называется k-уровневой (на Рис. 3.1 для простоты изображены лишь три уровня).

Метод анализа иерархий, как метод решения сложных неформализуемых проблем, включает следующие процедуры:

  • иерархическое структурирование проблемы;

  • попарное сравнение элементов иерархии;

  • поэтапное выявление приоритетов.

При иерархическом структурировании проблемы первый (высший) уровень соответствует цели проблемы. Элементы последующих уровней отождествляются:

  • с возможными решениями (альтернативами);

  • с ограничениями;

  • со сторонами, заинтересованными в том или ином решении проблемы;

  • с показателями (критериями) эффективности и т.п.

В простейшем случае иерархия является трехуровневой и включает (Рис.3.2):

  • уровень цели – первый уровень;

  • уровень альтернатив (возможных решений) – второй уровень;

  • уровень критериев – третий уровень.



Рис. 3.2. Простейшая трехуровневая иерархия
В качестве иллюстрации применения технологии иерархического структурирования можно рассмотреть следующий простой пример. Менеджер по персоналу отбирает одного из нескольких претендентов на вакантную должность.

Пусть имеется три претендента (A, B, C) . Выбор осуществляется с учетом следующих критериев: 1) возраст, 2) образование, 3) владение современными информационными технологиями, 4) знание иностранного языка, 5) коммуникабельность, 6) психологическая устойчивость, 7) способность к самообучению.

Менеджер стремится подобрать работника, наилучшим образом отвечающего совокупности перечисленных требований. Иерархия проблемы в данном случае является трехуровневой, при этом число элементов второго уровня (уровня альтернатив) равно трем, а третьего (уровень критериев) — семи.

Следует отметить некоторые общие требования, которые необходимо соблюдать при структурировании проблемы:

  • Все элементы верхних уровней должны быть попарно сравнимы по отношению ко всем связанным с ними элементами нижних. Определяя иерархию проблемы, необходимо следить, чтобы можно было получить осмысленные ответы на вопросы типа (применительно к рассмотренному выше случаю): Насколько работник A с точки зрения интересов фирмы ценнее работников B или C по показателю «владение современными информационными технологиями»? При выполнении этого требования удается выявить приоритеты (предпочтения) среди альтернатив и тем самым определить решение, наилучшим образом отвечающее всем условиям проблемы.

  • Структурирование проблемы предполагает участие на этом этапе исследования всех заинтересованных субъектов. Это обеспечивает полноту перечня возможных решений, позволяет предположить, что рассматриваемые альтернативы и введенные показатели эффективности отражают весь диапазон точек зрения и предпочтений всех участников. На этом этапе не должны, как несущественные, отбрасываться какие-либо предложения. Участники процесса выбора решения смогут позже (на следующих этапах исследования) выразить свои индивидуальные предпочтения.

  • Единогласия участников следует добиваться только при определении цели – высшего уровня иерархии, так как выбор цели предопределяет характер всех суждений и оценок, необходимых для выяснения предпочтений на множестве альтернатив.

  • Практика решения задач с помощью метода анализа иерархий показывает, что число элементов на любом уровне иерархии не должно превышать 7 – 9. В противном случае затрудняется сопоставление элементов иерархии между собой, усложняется получение взаимосогласованных оценок (суждений), возрастает трудоемкость расчетов и риск получения ошибочных решений.



1   2   3   4   5   6   7   8

Похожие:

Учебное пособие по дисциплине «Математическое моделирование и теория принятия решений» iconУчебное пособие посвящено сущности управленческих решений, влияющим...
Бирман, Л. А. Управленческие решения: учебное пособие/Л. А. Бирман. М.: Дело, 2008. 208с
Учебное пособие по дисциплине «Математическое моделирование и теория принятия решений» icon1. Основные понятия и определения теории анализа и принятия решений...
Вводные понятия теории анализа и принятия решений. Области применения. Лицо, принимающее решение (лпр). Альтернативы и критерии в...
Учебное пособие по дисциплине «Математическое моделирование и теория принятия решений» iconРабочая программа учебной дисциплины «Теория принятия решений (дополнительные главы)»
Предметом изучения курса является процесс разработки и принятия управленческих решений на базе системной концепции и экономико-математических...
Учебное пособие по дисциплине «Математическое моделирование и теория принятия решений» iconРабочая учебная программа теория принятия решений (дисциплина) для специальности
Предметом изучения курса является процесс разработки и принятия управленческих решений на базе системной концепции и экономико-математических...
Учебное пособие по дисциплине «Математическое моделирование и теория принятия решений» iconСтатья начинается с разбора примера задачи принятия решения выбора...
Орлов А. И. Теория принятия решений с позиций менеджмента. – Журнал «Современное управление». 2000. No С. 23-42
Учебное пособие по дисциплине «Математическое моделирование и теория принятия решений» iconУчебное пособие по дисциплине «Теория государства и права»
Учебное пособие предназначено для студентов, обучающихся по очной, заочной формам, в том числе с использованием дистанционных технологий...
Учебное пособие по дисциплине «Математическое моделирование и теория принятия решений» iconПрограмма вступительного экзамена в аспирантуру по специальности...
В основу настоящей программы положены следующие дисциплины: функциональный анализ, теория дифференциальных уравнений, теория управления,...
Учебное пособие по дисциплине «Математическое моделирование и теория принятия решений» iconМатематическое моделирование термически нагруженных конструкций котельных агрегатов
Специальность: 05. 13. 18 – Математическое моделирование, численные методы и комплексы программ
Учебное пособие по дисциплине «Математическое моделирование и теория принятия решений» iconУчебное пособие для студентов высших учебных заведений, обучающихся...
Т11 Теория и методика обучения математике: лабораторный практикум : учеб пособие для студ высш учеб заведений, обучающихся по направлению...
Учебное пособие по дисциплине «Математическое моделирование и теория принятия решений» iconН. Р. Шишкина Экономическая теория Учебное пособие
Экономическая теория: Учебное пособие для заочной формы обучения с применением дистанционных технологий./ Под ред проф. А. Н. Зайцевой....
Учебное пособие по дисциплине «Математическое моделирование и теория принятия решений» iconКурсовой проект по дисциплине Методы принятия управленческих решений...

Учебное пособие по дисциплине «Математическое моделирование и теория принятия решений» iconКурсовой проект по дисциплине Методы принятия управленческих решений...

Учебное пособие по дисциплине «Математическое моделирование и теория принятия решений» iconКурсовой проект по дисциплине Методы принятия управленческих решений...

Учебное пособие по дисциплине «Математическое моделирование и теория принятия решений» iconКурсовой проект по дисциплине Методы принятия управленческих решений...

Учебное пособие по дисциплине «Математическое моделирование и теория принятия решений» iconКурсовой проект по дисциплине Методы принятия управленческих решений...

Учебное пособие по дисциплине «Математическое моделирование и теория принятия решений» iconУчебное пособие Для специальности: 030501 Юриспруденция Ростов-на-Дону
Учебное пособие «Теория конституционализма в России» составлено в соответствии с требованиями Государственного образовательного стандарта...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск