От фундаментальных наук морфологии, физиологии, физики, эволюционного учения к экологии интеллектуальных систем, медицине, общественному здоровью





НазваниеОт фундаментальных наук морфологии, физиологии, физики, эволюционного учения к экологии интеллектуальных систем, медицине, общественному здоровью
страница3/39
Дата публикации21.08.2013
Размер4.9 Mb.
ТипКнига
100-bal.ru > Информатика > Книга
1   2   3   4   5   6   7   8   9   ...   39

28



А.Л. Еремин. НООГЕНЕЗ И ТЕОРИЯ ИНТЕЛЛЕКТА

нентов в подсистеме человечества (числа человек в социуме государства) в 10—102 раз.

Количество компонентов наносистемы (лат.nannos — карлик —10-9 доля исходной величины). В нейронной организации, соразмерной с 1 мм3 по приблизительным расчетам содержится 1—300 нейронов, размер тела которых равен 3—800 мкм. Часто в фирмах, учреждениях, институтах ра­ботает от 10 до 104 человек, что приблизительно равно или в 10 раз мень­ше количества нейронов в 1 мм3 мозга.

Ноогенез и статистика количеств коммуникативных связей в мозге. У новорожденного ребенка мозг примерно вчетверо меньше, чем у взрослого человека. Размеры нейронов мозга увеличиваются, а характер нервных связей и сетей усложняется по мере роста ребенка, его общения с людьми и предметами внешнего мира (Ф.Блум и др., 1988). На рис. 1.2 иллюстрируется в динамике развитие нейронов и увеличение числа связей между ними в ходе развития коры головного мозга у детей в период от рождения до двух лет (Ф. Блум и др., 1988; Conel, 1939, 1959). Каждый нейрон может быть связан нервными отростками и синапсами примерно с 500 (Л.Г.Воронин, 1979) — 1000 (Е.В.Максимова, 1990) — 3500 (Б.Ф.Сергеев, 1986) — 10000 (Г. Хакен, 2001) клетками.

Ноогенез и статистика количеств коммуникативных связей челове­чества. Формирование глобальной информационно-интеллектуальной системы. Открытия и изобретения XX века привели к буму развития ин­формационных технологий, средств связи и средств массовой информа­ции, который к концу века характеризовался чрезвычайными объемами потоков информации, производимой, хранимой, передаваемой с помо­щью бессчетного количества принтеров, ксероксов, бумажных носителей информации — книг, радиоприемников, магнитол, спутников, фото- и ки­нокамер, факсов и модемов, а также 700 млн телефонов 200 млн компью­теров и 1200 млн телевизоров (М. Пайк, 1996). Следует отметить стреми­тельность роста пользователей техническими средствами информации.

Проследим, как развивалась интеллектуальная энергетика (способы, методы и структуры получения и применения интеллектуальной энер­гии) человечества с появлением новых видов связей, увеличением числа взаимодействующих людей и скоростей взаимодействия между ними, достижением современных объемов аккумулирования информации на всевозможных носителях, охватом сетями взаимодействия популяции.

30

Ноогенез — эволюция интеллектуальной материи














новорожденный 3 месяца 15 месяцев 2 года

Рис. 1.2. Развитие нейронов и увеличение числа связей между ними в коре головного мозга детей

100 тыс.лет до н.э. (по разным данным — от 40 до 200 тыс.лет) — на Земле появился Человек разумный (Homo sapiens), количество которо­го к XXI веку достигло 6 млрд.

5 тыс. лет до н. э. — появилось письменное взаимодействие — был открыт шумерский алфавит и письмо; письменность майя и кириллица — более 1 тыс. лет назад; современная грамотность: по данным ООН по 258 странам мира — грамотных 83,3% — около 5 млрд.

2,5 тыс.лет до н.э. — появилось меновое взаимодействие — в Египте и малой Азии, при оплате товаров и услуг начали использовать золото, сере­бро и медь; монеты — 8—7 века до н. э. в Лидии и Древней Греции.

XV век — появилось взаимодействие через чтение-печатание — печат­ный станок изобрел И. Гутенберг в 1454 году, после этого развилось книго­печатание и появились бумажные деньги (в России — 300 лет назад).

XIX век — появилось взаимодействие людей после передвижения их на расстояния — около 150 лет назад были изобретены пароход, паровоз, автомобиль, самолет.

1876 год — Александр Белл патентует телефонный аппарат. К концу XX века количество телефонов достигает 700 млн.

31

А.Л. Еремин. НООГЕНЕЗ И ТЕОРИЯ ИНТЕЛЛЕКТА




1895 год — послан первый радиосигнал (Гульермо Маркони и Алек­сандр Попов). «Эра радио» началась в 1906 году. В 1929 году был изобре­тен автомобильный радиоприемник, и уже в начале 1930-х годов ежеднев­ная мировая радиоаудитория достигала 50 млн человек.

1923 год — Владимир Зворыкин создал телевизор. В 1936 году регу­лярные телепередачи начались в Великобритании и Германии, в 1941 — в США. К концу XX века телевизоров насчитывалось до 1160 млн.

1952 год — запатентован транзистор, что послужило началом очеред­ного витка технологической революции: транзисторы позволили создать компьютер UNIVAC, что, в свою очередь, послужило началом современ­ной эпохи компьютеризации. 1977 год — компания Apple начала массо­вое производство первых персональных компьютеров. К концу XX века компьютеров было выпущено 200 млн.

1957 год — начало разработки сети без главного компьютера; 1969г. — первые четыре компьютера соединены сетью с коммутацией пакетов; 1983 г. — все компьютеры сети ARPANet перешли на протокол Transmissi­on Control Protocol/Internet Protocol (TCP/IP), позволивший подключаться к Интернет через телефонные линии; 1989 г. — Тим Бернерс-Ли разработал технологию гипертекстовых документов — язык Hiper Text Markup Lan­guage (HTML), который лег в основу самой известной в настоящее время службы Интернета World Wide Web (WWW). 2003 год — в мире насчи-

32

Ноогенез — эволюция интеллектуальной материи

тывается более 3 млрд Интернет-сайтов, сеть Интернет связывает 172 млн хостов и 689 млн человек (Washington ProFile, 23 июля 2003).

В 1983 году в мире насчитывался 1 млн абонентов сотовых телефонов, в 1990 году — 11 млн. Распространение сотовых технологий сделало этот сервис более дешевым, качественным и доступным. В результате, по данным Международного Телекоммуникационного Союза, в 1995 году в мире насчитывалось уже 90,7млн владельцев сотовых телефонов, за последующие шесть лет их число выросло более чем в 10 раз — до 956,4 млн. По состоянию на сентябрь 2003 года, в мире насчитывалось 1,29 млрд пользователей сотовыми телефонами. Предполагается, что к 2007 году их количество увеличится почти вдвое и превысит 2,15 млрд (Washington ProFile, 26 ноября 2003).

Все это за краткий в историческом аспекте период, особенно за по­следние 50 лет, привело к «информационной революции» — резкому, скачкообразному изменению количества и качества сообщений, данных, знаний, осведомлении о положении дел, сведений, передаваемых, с помо­щью специальных средств связи.

При прогнозировании по различным глобальным показателям, досто­верность предсказаний, естественно, падает с ростом лага, поскольку труд­но или невозможно учесть новые факторы, которые могут вступить в игру. Следует с большой осторожностью оценивать будущие значения на основе принятой экстраполяции и дисперсии отклонений в прошлом Увеличение объема передаваемой в мире информации происходит экспоненциально. Столь резкая динамика, при относительно малой инерции этой отрасли, затрудняет экстраполяцию существующей зависимости в будущее.

Между тем, сложно уйти от соблазна хотя бы обозначить наметившу­юся к XXI веку характерную тенденцию роста количества пользователей техническими информационными средствами со стабилизацией на ми­нимуме при исчерпании инерции и охвате только обеспеченной части цивилизованного населения (min на рис. 1.4) и со стабилизацией на мак­симуме при стирании существующего расслоения общества и охвате всего мирового прогнозируемого населения (max на рис. 1.4 ).

Способности нейрона «общаться» одновременно с каким количеством клеток не изучены. Человек ограничен в удержании внимания и сосре­доточенном восприятии, и, обычно, одномоментно связывается только с одним информационным источником.

33



Из психологии и менеджмента известно, что оптимальность колле­гиального принятия решения наблюдается в коллективе до 10—102 чел. С помощью средств связи человек неодномоментно общается примерно с 103 абонентами. Таким образом, количество коммуникативных связей в

34

Ноогенез — эволюция интеллектуальной материи

цепи в мозге приблизительно равно или больше числа коммуникативных связей человека в 10 раз.

Из сравнения данных, представленных в таблице 1.4 ясно, что при примерно равном количестве «компонентов» мозг в сопоставлении с чело­вечеством является функционально медленной, но компактной информа­ционно-интеллектуальной системой.

1.2.2. Критическое количество интеллектуальных компонентов

Из анализа рисунков 1.1 и 1.7, таблицы 1.1 и 1.4, следует, что можно утверждать о наличии некоторой точки достижения «критического коли­чества интеллектуальных компонентов» — n (n > 109). Эта точка может характеризовать «ноореволюцию» — переход развертки информационной системы в качественно новую автономно-интеллектуальную, разумную си­стему, способную к полноценным синергетическим актам ее компонентов и распространению интеллектуальной энергии во внешнюю среду.

Возможно, в науках феномен начала интеллектуальной деятельности сравним с достижением критической массы радиоактивного вещества — каждая частица такого вещества обладает радиоактивностью, но цеп­ная реакция, необходимая для ядерного взрыва может начаться, только если в одном месте будет сконцентрировано более 9 кг радиоактивного вещества.

Предвосхищая наши математические подсчеты и сравнения, в 1940 году Пьер Тейяр де Шарден писал: «В универсуме, по-видимому, опреде­ленно существует естественное соотношение между размером и числом... Измеряемые микронами, нервные клетки должны были исчисляться мириадами... Как и всякая другая форма жизни, человек, чтобы стать полностью человеком, должен был бесчисленно умножиться... Ничтож­ный морфологический скачок и вместе с тем невероятное потрясение сфер жизни — в этом весь парадокс человека... Когда в результате ско­пления достаточного множества элементов это существенно конвергент­ное развитие достигнет такой интенсивности и такого качества, что для дальнейшего своего объединения человечество, взятое в целом, должно... «пунктуально» осознать само себя..., тогда то и наступит для Духа Земли финал и увенчание».

35

А.Л. Еремин. НООГЕНЕЗ И ТЕОРИЯ ИНТЕЛЛЕКТА

1.2.3. Пирамида интеллектуальной биомассы

По позиции автора для интеллектуальных систем важным показате­лем является количество интеллектуальных компонентов. Однако учиты­вая, что в биологии, физиологии, анатомии, физике и экологии учет коли­чества массы является общепринятым в ряде математических моделей, продолжим некоторый анализ и в этом направлении.

В связи с недостатком точности в известных данных по количеству нервных клеток у различных животных, следует отметить статистику веса головного мозга, которая у млекопитающих описывается формулой, впер­вые предложенной О.Снеллом (O.Snell) еще в 1891 году:

Ммозга = а Мтела 0,68.

По уточнениям В. Стахла, для млекопитающих действует закономер­ность Ммозга = 0,01Мтела0,70 и вес мозга у мелких животных от самого малого достигает у крупных животных — 4000 г у слона, 2800 г у кита. Для человека же Ммозга = 0,08—0,09 Мтела0,66 (W.R.Stahl, 1965) и средний вес головного мозга взрослого мужчины — 1375 г, женщины — 1275 г (инди­видуальные вариации — 900—2000 г). Отношение веса головного мозга к весу тела у человека превышает примерно в 4 раза таковое у животных и составляет около 10% у новорожденного и 2,5% у взрослого человека (П.Г.Костюк, 1981).

Экстраполируя по объему и весу мозга примерную численность нерв­ных клеток можно предположить, что у родившегося ребенка весом 4 кг вес мозга 400 г, соответственно численность нервных клеток приблизи­тельно может составлять 3-30 млрд. Таким образом, у новорожденного количество нервных клеток больше, чем у взрослого шимпанзе и больше, чем число населения Земли в XIX веке, но сравнимо в порядковом отноше­нии с численностью человечества на Земле в XX—XXII вв.

По некоторым данным за 70 лет человек потребляет 50 т воды и 200— 300кг поваренной соли, а также 10т углеводов, 2,5т белка, 2т жира (при­мерно 1,5-107г органических веществ). По приблизительным расчетам отношение массы интеллектуальной системы (Мис) к массе питающей ее тела-биосистемы (М), к употребляемой из окружающей среды биомассе органических веществ (Мов) может быть выражено в математической мо­дели соотношения «пирамиды интеллектуальной биомассы»:

Мис : Мбс : Мов = 1 : 5∙10 : 104.
36

Ноогенез — эволюция интеллектуальной материи

По несложным расчетам, учитывая население Земли, в настоящее вре­мя масса «мозгового вещества» человечества составляет около 8∙1012 г, сово­купная масса всех людей на земле «тела человечества» около 4∙1013 г, а масса употребляемого в течение их жизни органического вещества приблизитель­но 8∙1016г. Здесь уместно отметить, что по некоторым данным количество массы «живого вещества» биосферы Земли составляет — 1019—1021 г.

Таким образом, для интеллектуальной системы человечества может быть условно применима приблизительная, в будущем возможно уточ­ненная, пропорция «пирамиды интеллектуальной биомассы»: отношение массы интеллектуальной системы, к массе биосистемы, к употребляемой ею в течение жизни биомассе из окрркающей среды.



1.2.4. Максимальное количество интеллектуальных компонентов

Остается вопрос. Может ли теоретически человечество по количеству людей на планете достигнуть той предельной цифры в 1012, которая встре­чается в литературе по количеству нервных клеток в головном мозге?

37

А.Л. Еремин. НООГЕНЕЗ И ТЕОРИЯ ИНТЕЛЛЕКТА

При ответе на него следует отметить неоднозначность среднесрочных (на 150 лет) прогнозов Департамента по населению ООН и Института мировых ресурсов (1992) по нижнему (около 5 млрд) и верхнему (свыше 2 5 млрд) уровням мирового населения (рис. 1.6).

Также следует отметить историю вопроса по оценке несущей способ­ности Земли, которая (табл. 1.3) основывалась в основном на популяцион-ном принципе Мальтуса, утверждавшем, что именно ресурсы определяют скорость роста населения и его предел.

С. П. Капица (1999) рассматривал население мира с точки зрения принципа демографического императива, как единую развивающуюся путем самоорганизации открытую систему, в которой темп роста зависит от внутренних свойств системы, а не от внешних условий и ресурсов. При этом, по выведенным математическим моделям предел населения состав­лял 12,5—14 млрд.



Рис. 1.6. Среднесрочные прогнозы динамики мирового населения (ООН, 1992) 38

Ноогенез — эволюция интеллектуальной материи

При нашем анализе, с точки зрения принципа интеллектуальных си­стем и ноогенеза, учитываются оба предыдущих принципа. В частности, целесообразно придерживаться того, что предел человечества зависит от ресурсов земли и «пирамиды интеллектуальной биомассы», а среднесроч­ный демографический прогноз роста популяционной системы — 12,5— 14 млрд. Между тем, попробуем рассмотреть долгосрочный прогноз по возможному теоретическому росту и максимальному пределу интеллекту­альной системы человечества сравнимому с данными по интеллектуальной системе мозга с максимальным количеством клеток — триллион (1012).

Для существующего в настоящее время 6-109 людей требуется для употребления в течение своей жизни масса органического вещества при­близительно 9-1016 г. По некоторым данным биомасса — масса «живого вещества» (Мжв) составляет 1019—1021 г в биосфере — оболочке Земли на­селенной живыми организмами. Таким образом, теоретическое макси­мальное количество людей на Земле (Nmax) может быть выведено, если биомассу живого вещества биосферы (Мжв = 1019—1021г) разделить на упо­требляемую из окружающей среды одним человеком в течение жизни биомассу органических веществ (Мов=1,5-107 г).
Nmax = Мжв/ Мов ≈ 6∙1011 — 6∙1013.
Исходя из вышеизложенных пропорций к прогнозу максимального предела можно отнести: если бы человечество научилось полезно исполь­зовать для собственного употребления и своевременно восстанавливать всю биомассу живого вещества биосферы, то количество людей уже через 300 лет, при сохранении современных темпов роста (удвоение мирового населения каждые 35 лет), могло бы увеличиться примерно в 103 раз и достигнуть той предельной цифры, которая встречается в литературе по количеству нервных клеток в головном мозге в 1012 — триллиона.

Справедливости ради следует отметить, что максималистская модель предела интеллектуальной системы человечества скорее игнорирует по­требности и эволюционные миссии других биологических организмов, а также рассмотрение и учет таких идей дифференцировки и конфликт­ности, в том числе, в сфере потребления внутри человеческой популяции как «избранности народа, нации, расы», «избранности класса», мальту­зианства и «золотого миллиарда», и наоборот — скорее основывается на полном доминировании интеллектуальной системы человечества над всем биологическим и гармоничном развитии внутри человеческой популяции

39

А.Л. Еремин. НООГЕНЕЗ И ТЕОРИЯ ИНТЕЛЛЕКТА

с вытекающими, как следствие, идеями «все люди рождаются с равными правами», в том числе на потребление, «все люди братья», «мы разные, но мы едины», «каждому человеку есть место под солнцем».

1.2.5. Алгебра эволюции интеллектуальной материи в едином четырехмерном континууме

Сложность поиска единой алгебраической функции зависимости ро­ста количества интеллектуальных компонентов от времени эволюции за­ключается в недостатке данных о количествах компонентов (нейронов и людей), неравномерности их скорости размножения и продолжитель­ности жизни в различные временные периоды онтогенеза, филогенеза и развития человечества.

Эта зависимость, безусловно, не прямолинейная. Невозможно учесть все факторы. Следует с большой осторожностью оценивать будущие значения на основе принятой экстраполяции и дисперсии отклонений в прошлом

Из графика построения аналоговых моделей количества компонентов интеллектуальных систем во времени (рис. 1.7), выведенные линейные тренды связи могут приблизительно обозначить расчетные развертки ин­теллектуальных систем во времени, которые составляют:

  • филогенез: n ≈ 0,7 t;

  • развитие человечества: n ≈ 1,2 t;

  • онтогенез: n 3,9 t,

где n — lg количества компонентов, t — lg количества лет.

Из приведенных данных видно, что индивидуальное развитие в ма­теринском организме подобно работе уникального реактора, в котором увеличение количества интеллектуальных компонентов (от 1 до 109) проис­ходит за 9 месяцев с чрезвычайно высокой скоростью (≈109 интел. компо­нент/год), по сравнению со временем в 40 тыс. лет, которое понадобилось для этого человечеству (≈105 интел. компонент/год), и 1,5—3,5 млрд лет — временем эволюции нервных систем (≈10 интел. компонент/год).

Возможно дальнейшая разработка и уточнение различных «трендов ноогенеза» (англ. trend —направление, тенденция) — статистических по­казателей, выражающих (математически, алгебраически) общие тенден­ции временных рядов количественных величин и характеристик интеллек­туальных систем (в ходе эволюции, формирования и функционирования).

40



А.Л. Еремин. НООГЕНЕЗ И ТЕОРИЯ ИНТЕЛЛЕКТА

1.2.6. От размеров и иерархии к фрактальной геометрии интеллектуальных структур

Расстояние. В центральной нервной системе расстояние между компонентами находится в диапазоне от расстояния между нервными клетками и другими возбудительными образованиями (в синапсах) до расстояния от анализирующих до исполнительных органов — от 10-6м до 2м (Л. Г. Воронин, 1979). В человеческом сообществе расстояние между компонентами находится в диапазоне: от расстояния при межличностном речевом общении между людьми до коммуникаций с использованием специальных средств (телефон, телевидение, компьютерные сети) на даль­ние расстояния (до длины экватора Земли) — от 1 м до 4∙107 м. Отсюда следует, что расстояние, которое может являться условием усложняющим коммуникацию между компонентами мозга меньше, чем между компо­нентами человечества в 107 —1013 раз (табл. 1.4 ).

Общая длина коммуникационной сети. Общая длина нервных от­ростков 4,5∙106 м (Н. П. Бехтерева, 1988). Общая длина всех человеческих коммуникаций не определена, но может достигать порядка 1014 —1017м (количество пользователей специальных средств связи умноженное на максимальную длину связи — длину экватора), что является больше об­щей длины нервных отростков в 108 —1011 раз.

Иерархия форм и размеров подструктур мозга и человечества. При выделении и описании интеллектуальных систем и их компонентов (челове­чество, мозг, нейрон) применялся феноменологический подход, при выделе­нии иерархии и описании их подсистем — статистический метод (табл. 1.4, рис. 1.8). Величины иерархических структур организации автономных ин­формационно-интеллектуальных систем мозга человека и всего человечества укладываются в 5—7 иерархий и в 10 размерных порядков (рис 1.8).

Фрактальная теория интеллектуальных систем. «Фракталом назы­вается структура, состоящая из частей, которые в каком-то смысле подобны целому» (B.B.Mandelbrot, 1975). Фрактальные объекты — это объекты, ко­торые обладают свойством самоподобия, когда малый фрагмент структуры объекта подобен другим фрагментам и структуре в целом. С точки зрения фрактальной геометрии к ним относят устройство кораллов, бронхиол-брон­хов в легких человека, капилляров-артериол-артерий кровеносной системы и многое другое. Разнообразные примеры пространственно-временной ие-

42

Ноогенез — эволюция интеллектуальной материи

рархичности демонстрируют развитие однотипных режимов в существенно различных природных системах. Объединяющим подходом, пригодным для описания такого класса явлений, может служить теория фракталов, ис­пользованная для этих целей в работах. Данный класс объектов относится к фракталам, если выполняется соотношение: D n r ,

где «n» — число объектов с характерным размером не менее «г». По­казатель «D» называется фрактальной размерностью и отражает как раз­мерность пространства, где функционируют изучаемые объекты, так и характеристики самих этих объектов.

Учитывая характеристики подобия, а также размерности количе­ственной развертки (табл. 1.4, рис. 1.8) предлагается интеллектуальные компоненты отнести к фрактальным объектам.

Один из самых известных фракталов — множество Мандельброта воз­никает при итерации комплексного отображения z→z2+c, где с — константа на комплексной плоскости. Это отображение исследовалось еще в 40-е годы XX века французским математиком Г. Джулиа. Уже тогда было ясно, что столь простое отображение способно породить удивительно причудливые и сложные формы. Однако чудовищное разнообразие и удивительная красота этих форм стала понятной только благодаря гению Бенуа Мандельброта.



А.Л. Еремин. НООГЕНЕЗ И ТЕОРИЯ ИНТЕЛЛЕКТА

На рис. 1.9 предпринята попытка продемонстрировать красоту итери­рованных фракталов в аналогии с рисованными структурами интеллекту­альных систем.

Широкое распространение фрактальный подход нашел в теории дина­мических систем. При детерминированном подходе, как правило, входные данные (в том числе начальные условия) полностью определяют решение. При этом для нелинейных систем существуют такие параметры, при ко­торых возможны «пороговые» явления решения. До достижения критиче­ских параметров траектории динамической системы могут притягиваться некоторым аттрактором (предельной точкой траектории). Но по дости­жении критического параметра картина резко меняется, и динамическая система начинает вести себя по-другому. Ее траектории могут стремиться к некоторому циклу значений, которые будут повторяться вновь и вновь («странные аттракторы»).

Фрактальный подход для таких динамических нелинейных систем как интеллектуальные системы заключается, в том числе, в определении такого параметра, как количество интеллектуальных компонентов, с обозначен­ным выше его аттрактором — критической пороговой точкой (n ≈ 109) и максимально предельной (n ≈ 1012).

Учитывая выявленный целый ряд сходств и количественных аналогий, подобий и соответствий в иерархии, соразмерностей в биометрии, мною, с точки зрения фрактального подхода, выдвигается гипотеза; образовавшаяся в процессе эволюции структура головного мозга человека разумного при реализации своих интеллектуальных функций может стремиться к соз­данию по своему подобию макроструктуры человечества разу много.

Фило- и онтогенетическое увеличение количества нервных клеток на поверхности коры головного мозга с увеличением связей между нейро­нами-фракталами моделирует аналогичное структурное макроподобие — увеличение количества людей на поверхности земной коры с формирова­нием коммуникационных каналов между ними.

Возможно, фрактальный подход применим к теории интеллекта, а именно, к структурно-функциональной логике интеллектуальных систем, заключающейся в математической итерации — неоднократно повторяю­щемся образовании новой функции из данной функции.

Возможно, существует итерация интеллектуальная повторяющее­ся образование интеллектуальной функции, как горизонтально, в едином

44

Ноогенез — эволюция интеллектуальной материи









нейрон

мозг

человечество

Рис. 1.9. Фрактальный подход к рассмотрению структур интеллектуальных систем и интеллектуальной итерации.

Структуры в нижнем ряду выполнены с помощью фрактального компьютерного программирования, первые две из них по функции 1/f(zxz+c)

по размерам материальном ряду (интеллекты людей), так и вертикаль­ный перенос повторения интеллектуальной функции на более высокий в иерархии материи размерный ряд (нейрон мозг человечество).

«От структуры — к функциям». Как с появлением мозга Homo sapiens появилось психофизиологическое интеллектуальное, так, возможно, и с достижением человечеством пороговой точки количественных параметров будет формироваться новая интеллектуальная функция человечества и но­вая его «миссия» (структурно-функционально обусловленное задание).

Возможно, некоторый вклад в теорию ноогенеза могло бы привнести раз­витие фрактальной геометрии интеллектуальных структур раздела

45

А.Л. Еремин. НООГЕНЕЗ И ТЕОРИЯ ИНТЕЛЛЕКТА

метрической системы знаний, изучающего размеры и формы интеллекту­альных структур, состоящих из частей (фракталов), которые в каком-то смысле подобны целому, обладающих свойством самоподобия, когда малый фрагмент структуры объекта в некотором подобен другим фрагментам и структуре в целом, и образующихся методом итерации — неоднократно повторяющемся образованием новой функции из данной функции.

Кроме того, возможно развитие ноометрии [rp. noos —разум, мысль + metreo—измерять] — раздела науки о мерах, размерах и количественных измерениях структурно-функциональных параметров информационно-интеллектуальных систем (в отличие от биометрии [гр. bios —жизнь] и геометрии [гр. ge — земля])

1.2.7. Два основных класса компонентов, их количество и функции в макросоциумах интелсистем

В интеллектуальной системе мозга пространство между нейронами и их отростками заполнено специализированными опорными клетками, в совокупности называемыми глия. По подсчетами глиальных клеток при­мерно в 5—10 раз больше, чем нейронов (Ф.Блум, 1988). Глие обычно при­писывают довольно неопределенные «хозяйственные» обязанности.

В отличие от нейронов глиальные клетки могут делиться. Наиболее распространенный тип глиальных клеток называют астроцитами за их звездчатую форму. Считается, что астроциты очищают внеклеточные про­странства от избытка медиаторов и ионов, способствуя устранению хими­ческих «помех» для взаимодействий, происходящих на поверхности ней­ронов. Возможно, астроциты помогают нейронам и тем, что доставляют глюкозу наиболее активным клеткам. Они могли бы также изменять на­правление кровотока, а, следовательно, и переноса кислорода, обеспечивая им в первую очередь более активные участки (Ф.Блум, 1988). Астроциты, по-видимому, играют существенную роль в передаче некоторых сигналов, важных для динамической регуляции синоптической функции. Отдельные астроциты действительно как бы ограничивают определенные участки входных синоптических связей на поверхности нейрона. Известно, что после локального повреждения мозга астроциты участвуют в ремонте, убирая омертвевшие кусочки нейрона. Эта деятельность, возможно, огра­ничивает распространение токсических веществ.

46

Ноогенез — эволюция интеллектуальной материи

Глиальные клетки другого типа — олигодендроциты. Некоторые аксо­ны имеют изоляцию, из клеточного изоляционного материала — миелина (представляет собой плотную оболочку, образованную слоями мембраны олигодендроцита), обеспечивающую быстрое проведение электрических импульсов.

Все это может свидетельствовать о том, что все компоненты интеллек­туальных систем можно подразделить на классы — «интеллектуальный», который составляют нейроны и «хозяйственный» — глиальные клетки.

По модным в XX веке классовым теориям напрашивается сравнение с такими классами интеллектуальной системы макросоциума человечества как «интеллектуальный» — капиталисты и интеллигенция и «хозяйствен­ный» пролетарии и крестьянство. В случае правомерности аналогии — у макросоциума человечества есть пример для подражания в развитии, диф-ференцировке и стабильности функционирования, а именно:

закономерности неоднородности интелсистемы мозга

Дифференцировка на два основных класса. Появляясь на свет в ходе размножения от одинаковых родителей, в ходе развития, компоненты интелсистемы дифференцируются на два основных класса «хозяйствен­ный» и «интеллектуальный» с различными функциями; различия между двумя классами сохраняются на весь период существования интелсистемы.

Различные функции компонентов разных классов. Компоненты «хозяйственного» класса обладают функциями обеспечения и перераспре­деления энергии и питательных веществ популяции, участия в проведении информационных потоков, проведения ремонта и очищения интелсисте­мы; функции нейронов, составляющих «интеллектуальный» класс, рассмо­трены в данной книге.

Мобильность и консервативность «интеллектуального» клас­са. Компоненты «интеллектуального» класса с одной стороны более «кон­сервативны» — не размножаются, если не погибают, сохраняются сами и, очевидно, отвечают за сохранение информации и памяти в течение всего времени существования интелсистемы, с другой — они более лабильны, отвечают за сложно рефлекторные информационные функции интелси­стемы.

Различное количество компонентов в классах. Количество компо­нентов «хозяйственного» класса в 5—10 раз больше количества «интеллек­туальных» компонентов.

47

А.Л. Еремин. НООГЕНЕЗ И ТЕОРИЯ ИНТЕЛЛЕКТА

Функционирование классов и их компонентов как единое целое.

Оба класса и составляющие их компоненты сотрудничают и взаимодей­ствуют как единое целое.

Пока, по существующему развитию науки, сложно определить нали­чие акцентов «ведущий — ведомый» в развитии и взаимодействии двух основных классов интелсистем. Вполне возможно, что здесь действуют закономерности гармонии и синергичности.

48

Теория интеллекта

1   2   3   4   5   6   7   8   9   ...   39

Похожие:

От фундаментальных наук морфологии, физиологии, физики, эволюционного учения к экологии интеллектуальных систем, медицине, общественному здоровью iconРоссийской федерации
Изучение данной дисциплины базируется на знаниях физики, химии, наук о Земле, физиологии человека, биохимии, микробиологии, генетики...
От фундаментальных наук морфологии, физиологии, физики, эволюционного учения к экологии интеллектуальных систем, медицине, общественному здоровью iconРабочая программа учебной полевой практики зоология позвоночных с...
Рецензент: Панов В. П., д б н., профессор кафедры физиологии, морфологии и биохимии животных
От фундаментальных наук морфологии, физиологии, физики, эволюционного учения к экологии интеллектуальных систем, медицине, общественному здоровью iconМоделирование в экологии и медицине
Пономарев Сергей Борисович доктор медицинских наук, профессор кафедры «Инженерная экология» Ижгту
От фундаментальных наук морфологии, физиологии, физики, эволюционного учения к экологии интеллектуальных систем, медицине, общественному здоровью iconПримерное поурочное планирование курса
Научные и социально-экономические предпосылки возникновения и утверждения эволюционного учения Ч. Дарвина
От фундаментальных наук морфологии, физиологии, физики, эволюционного учения к экологии интеллектуальных систем, медицине, общественному здоровью icon1. конкурс рефератОВ
Реферат пишется на любую тему по вопросам: медико-биологического направления, морфологии, хирургии, внутренних болезней, педиатрии,...
От фундаментальных наук морфологии, физиологии, физики, эволюционного учения к экологии интеллектуальных систем, медицине, общественному здоровью iconТематика контрольных работ и/или рефератов
Проблема инстинкта и научения в свете философских представлений и эволюционного учения. Современное понимание проблемы
От фундаментальных наук морфологии, физиологии, физики, эволюционного учения к экологии интеллектуальных систем, медицине, общественному здоровью iconТематика контрольных работ и/или рефератов
Проблема инстинкта и научения в свете философских представлений и эволюционного учения. Современное понимание проблемы
От фундаментальных наук морфологии, физиологии, физики, эволюционного учения к экологии интеллектуальных систем, медицине, общественному здоровью iconПрограмма по формированию навыков безопасного поведения на дорогах...
Научные и социально-экономические предпосылки возникновения эволюционного учения Ч. Дарвина
От фундаментальных наук морфологии, физиологии, физики, эволюционного учения к экологии интеллектуальных систем, медицине, общественному здоровью iconПрограмма по формированию навыков безопасного поведения на дорогах...
Урок Научные и социально-экономические предпосылки возникновения и утверждения эволюционного учения Ч. Дарвина
От фундаментальных наук морфологии, физиологии, физики, эволюционного учения к экологии интеллектуальных систем, медицине, общественному здоровью iconПрограмма по формированию навыков безопасного поведения на дорогах...
Развитие эволюционного учения Ч. Дарвина. Предпосылки возникновения теории эволюции биологических видов
От фундаментальных наук морфологии, физиологии, физики, эволюционного учения к экологии интеллектуальных систем, медицине, общественному здоровью iconЗоология с основами эволюционного учения (хордовые)
В связи с этим они относятся к группе вторичноротых. Тип хордовых делится на три подтипа: бесчерепные (Acrania), оболочники (Tunicata)...
От фундаментальных наук морфологии, физиологии, физики, эволюционного учения к экологии интеллектуальных систем, медицине, общественному здоровью iconЗавкафедрой морфологии и физиологии
Ключевые слова: цыплята-бройлеры, поросята, пробиотик, лактобифадол, витазар, живая масса, приросты, гематологические показатели
От фундаментальных наук морфологии, физиологии, физики, эволюционного учения к экологии интеллектуальных систем, медицине, общественному здоровью iconУчебно-методический комплекс по дисциплине «физиология центральной нервной системы»
Изложение общей физиологии человека, частной физиологии систем будет способствовать развитию профессиональ­ного мышления, необходимого...
От фундаментальных наук морфологии, физиологии, физики, эволюционного учения к экологии интеллектуальных систем, медицине, общественному здоровью iconПояснительная записка Цели и задачи дисциплины Изучение фундаментальных...
Формирование навыков проведения научных исследований, ознакомление с современной научной аппаратурой. Ознакомление с историей физики...
От фундаментальных наук морфологии, физиологии, физики, эволюционного учения к экологии интеллектуальных систем, медицине, общественному здоровью iconЧто такое вред здоровью?
Вопросы к зачету по судебной медицине для студентов стоматологического отделения лечебного факультета Сибгму
От фундаментальных наук морфологии, физиологии, физики, эволюционного учения к экологии интеллектуальных систем, медицине, общественному здоровью iconКнига составлена на основе тематических выдержек о здоровье и медицине...



Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск