Задача обработки решетки





НазваниеЗадача обработки решетки
страница4/6
Дата публикации05.04.2015
Размер0.57 Mb.
ТипЗадача
100-bal.ru > Математика > Задача
1   2   3   4   5   6
N переменными и 2М ограничениями. Минимум равен и достигается для . Основная теорема линейного программирования 18 эквивалентна теореме представления в этом случае. При условии, что для этой линейной программы существует решение, как показано в предыдущем разделе, основная теорема гарантирует решение, в котором не более, чем 2М из не равны нулю, так называемое, базовое решение.

Двойственная линейная программа [l5]
(4.12з)
так что для
(4.12b)
эквивалентная двойственной задаче /4.9/ для дискретной спектральной основы, где ограничение
(4.13)
было использовано для исключения и где . Её минимум равен и достигается при .

Основная задача может быть решена при использовании симплекс-метода [18]. Применение симплекс-метода к основной задаче приводит в результате к существенно тому же результату /вычислительному алгоритму/, что и применение, /одинарного/ метода замены к двойственной задаче [19]. Применив соответствующий метод для избежания зацикливания [20], может быть получен алгоритм, который гарантирует сходимость к оптимальному решению за конечное число шагов, хотя его воплощения обычно были медленными .

Задача чебышевской аппроксимации связана с вычислением оценки Писаренко; она может быть сформулирована, как минимизация линейного функционала на выпуклом пространстве, определенном ограничениями типа линейных неравенств [l6]. Она также решалась с использованием симплекс-метода /одинарная замена/. Однако для частной задачи чебышевской аппроксимации непрерывных функций полиномами с одной переменной существует вычислительный метод, который значительно быстрее симплекс-метода, это метод многократной замены Ремеза. Хотя были сделаны попытки распространить этот метод на более общие задачи [21], появившиеся в результате алгоритмы не достаточно хорошо понятны; в частности, не доказана их сходимость.

И наконец, задачи недискретной оптимизации, включенные в вычисление оценки Писаренко, /4.4/ к /4.9/, являются видом, известным, как полубесконечные программы. Как теоретические, так и вычислительные аспекты таких программ рассматриваются в сборнике статей, изданных Геттичем [22].

Резюме
Эта статья связана с тем, что вероятно является наиболее простой и интересной задачей в обработке антенных решеток; оценкой спектра мощности с известной основой при условии, что даны некоторые выборки его корреляционной функции. Хотя и простая, эта задача сохраняет несколько черт, которые являются общими для многих задач обработки решеток: многомерные спектры, корреляционные выборки с неравномерными отчетами и произвольные спектральные основы.

Исследование спектральных оценок, согласованных с корреляцией привели к задаче продолжимости. Были даны две характеристики продолжаемости ста задача, для случая временных последовательностей, известна как задача тригонометрических моментов и ее решение включает рассмотрение положительной определенности корреляционных выборок. Положительная определенность может поэтому рассматриваться как специальный случай продолжимости.

Базируясь на теоретической основе, разработанной при решении задачи продолжаемости, метод Писаренко был распространен со случая временных последовательностей на задачу обработки решетки. Было показано, что метод Писаренко тесно .связан с задачек продолжимости. Было показано, что вычисление оценки Писаренко включает решение линейной задачи оптимизации. Было показало, что решение этой задачи не является единственным в общем случае, хотя оно единственно для случая временной последовательности, где задача линейном оптимизации сводится к задача собственных значений.

Хотя рассмотренная в этой статье задача спектральной оценки была разработала для обработки решетки, теоретическая структура и результирующие алгоритмы должна быть полезными в других многомерных задачах, например, обработке изображений.


2.1 ИНТЕГРАЛЬНОЕ УРАВНЕНИЕ ДЛЯ ОТКРЫТОГО РЕЗОНАТОРА С ОСЕСИММЕТРИЧНЫМ ДИСКОМ

В § 9.3 было получено интегральное уравнение (9.39) для резонатора с диэлектрическим телом в виде шара. Та­кая форма диэлектрика хороша для анализа, но неудобна для практики.

Обычно приходится иметь дело с диэлектрическими образца­ми более сложной формы, в частности с диэлектрическим диском. В такой ситуации получить аналитическое выражение для ядра не удается, однако это не является препятствием для нахождения решения задачи.

Действительно, ядро уравнения для резонатора с шаром (9.39) — это сумма ядра для пустого резонатора и дополнитель­ного члена, представляющего собой поле, рассеянное шаром.

Запишем уравнение для резонатора с диском в аналогичном виде, поскольку физическая картина явлении одна и та же:

(9.45)
Здесь - ядро пустого резонатора; Т — ядро, связанное с рас­сеянием на диэлектрическом образце. Обсудим, что в сущности делается при решении уравнения (9.39) методом Галеркина. Для определенности будем считать, что в качестве базисных и весо­вых (см. приложение 2) взяты собственные функции резонатора без шара, которые обозначим и будем считать ортонормированными.

С первым слагаемым ядра все ясно, базисные функции являются его собственными, и действие интегрального оператора с та­ким ядром эквивалентно умножению на постоянную, являющую­ся собственным значением пустого резонатора:
(9.46)
Интегральный оператор со вторым слагаемым ядра представ­ляет собой магнитное поле тока на зеркалах, рассеянное шаром. Плотность тока задается в виде , а рассеянное поле рассчи­тывается на поверхности зеркала. При решении (9.39) расчет рас­сеянного шаром поля проводится аналитически. Однако ту же процедуру можно произвести численно, и тогда ограничения на формулу диэлектрического образца в значительной степени сни­маются.

Для расчета рассеянного поля будем применять интегральное уравнение (3.85). Диэлектрический образец может быть произ­вольным телом вращения, в частности диском.

После этих общих соображений рассмотрим процедуру реше­ния (9.45) последовательно. Функция U(x) ищется в виде

(9.47)
В соответствии с методом Галеркина (см. приложение 2) подставляем (9.47) в (9.45), затем умножаем на и повторно ин­тегрируем по образующей зеркала. С учетом ортонормированности базисных функций имеет однородную СЛАУ

(9.48)

где - собственные числа уравнения невозмущенного резонато­ра [см. (9.46)].

Элементы матрицы СЛАУ выражаются интегралами
(9.49)

Последнюю формулу надо понимать как символическую. Она эквивалентна процедуре расчета рассеянного поля, описанной вы­ше. Остановимся на ней подробнее.

Вначале необходимо найти поле на поверхности диэлектричес­кого тела, созданное током вида на зеркалах. Это можно было бы сделать с помощью (3.8), (3.9), однако есть более простой путь, если ограничиться рассмотрением тел небольших, на по­рядок меньших диаметра зеркал. Тогда можно воспользоваться приближенным выражением для поля в резонаторе, соответствую­щим приближенным функциям токов на зеркалах. На рис. 9.6 представлены графики распределения токов на зеркалах, соответ­ствующие низшему типу колебаний и колебанию, имеюще­му вариацию по радиусу . Резонатор конфокальный с па­раметром . Вблизи оси плотность тока, описываемая гиперсфероидальными функциями (кривые 1), практически не отли­чаются от экспоненциальной функции, умноженной на полиномы Лагерра (кривые 2), т. е. от гауссова пучка [68]. Радиальное распределение отличается только масштабом по радиусу.

Таким образом, будем описывать поле в резонаторе вблизи его центра приближенным .выражением в виде гауссова пучка
(9.50)

где
;
R - радиус кривизны волнового фронта; W радиус «освещен­ного пятна» в пучке. Последняя величина определяется как радиус, на


Рис. 9.6. Сравнение точных и приближенных кривых для гиперсфероидальных функций:

1 - точные, 2 - приближенные кривые
котором интенсивность пучка спадает в е раз по отно­шению к центру пучка. Характерной величиной для каждого пуч­ка является наименьший радиус «пятна» . Применительно к резонатору - это радиус «пятна» в центре, который связан с длиной резонатора 1:

(9.51)

1 Как и ранее, все длины предполагаются умноженными на волновое число, которое здесь соответствует действительной части собственной частоты невозмущенного резонатора.

Величины W и R медленно меняются вдоль резонатора:
(9.52)

(9.53)
В центре резонатора Естественно в резо­наторе существуют не один, а два встречных гауссовых пучка, и вблизи центра поле основной моды в приближении гауссова пуч­ка имеет вид
(9.54)
На зеркале для конфокальной геометрии резонатора в соответствии с (9.51)—(9.53) , и распределение тока имеет вид1

(9.55);

Для следующего колебания «1, 0, поле в центре резонатора представляется формулой
(9.56)
и на зеркалах

(9.57)

Таким образом, поле в резонаторе без образца, соответствующее различным модам, в приближении гауссова пучка нетрудно запи­сать. Оно играет роль первичного поля для задачи возбуждения диэлектрического образца.

Вычисляем эквивалентные токи на поверхности диэлектрика в предположении, что основная поляризация поля . В обозначе­ниях § 3.3 имеем:
1 Напомним, что в открытых резонаторах с круглыми зеркалами принята следующая индексация мод : первый индекс - число вариаций по R, второй - число вариаций по , а третий - число вариаций по

(9.58)
Теперь необходимо возвратиться к азимутальным гармоникам вида , поскольку ЭВМ — программы для диэлектричес­ких тел вращения сделаны применительно к ним. Первичные то­ки представляют собой сумму первой и минус первой гармоник. Каждую из них можно выделить, используя формулу Эйлера. В результате решения задачи возбуждения диэлектрического тела, а конкретно диска, получаем значения эквивалентных токов в дискретных и достаточно часто расположенных точках образую­щей. Зависимость от этих токов известная. Если объединить то­ки первой и минус первой гармоник, она будет такой же, как и у первичных токов (9.58).

Следующий этап — вычисление рассеянных диском полей на зеркалах. Для этого используются формулы (3.8), (3.9). Выра жения для элементов тензорной функции Грина следует упрос тить, как и при выводе уравнений (9.5)—(9.8), т. е. положить , а для функции использовать асимптотичес­кую формулу (9.22). Последняя содержит множитель, учитываю­щий набег фазы на половине размера резонатора (расстояние от образца до одного из зеркал). Такой же набег фаз имеется в первичном для диэлектрического образца поле. Этот сдвиг при­сутствует также в (9.56) и (9.57). Все это позволяет вынести за знак интеграла множитель , такой же, как и из основного ядра. Этот множитель, как и ранее, дает основную час­тотную зависимость. Ядра без него от частоты зависят слабо, и в них частота полагается равной действительной части собственной частоты пустого генератора.

Теперь уже можно вычислить элементы матрицы (9.48). Для определения элемента берется рассеянное поле, возбужденное нулевой модой пустого резонатора, т. е. , затем оно в соот­ветствии с (9.49) домножается на (9.55) и интегрируется. При этом необходимо помнить, что базисные функции предполагались нормированными. Поэтому функцию (9.55) необходимо предвари­тельно пронормировать. В силу осевой симметрии системы по­верхностный интеграл (9.49) можно представить в координатах вращения. Интеграл по берется аналитическим, а по радиаль­ной координате - численно. Остальные элементы отыски­ваются точно так же.

Далее решается задача на собственные значения, а затем с по­мощью формул (9.40) и (9.41) находятся изменения добротности и сдвиг частоты.

2.2 ИНТЕГРАЛЬНОЕ УРАВНЕНИЕ ОТКРЫТОГО РЕЗОНАТОРА С ДИЭЛЕКТРИЧЕСКИМ ДИСКОМ, НЕСООСНЫМ С ЗЕРКАЛАМИ [72]
При проведении измерений параметров диэлект­рика образец в виде диска часто удобнее расположить несоосно с зеркалами и, в частности, так, чтобы оси резонатора и диска были перпендикулярны (рис. 9.7). Такое расположение диска нарушает осевую симметрию задачи. В общем случае отход от осевой симметрии очень -сильно усложняет решение, поскольку теря­ется основное преимущество систем враще­ния — независимость отдельных азимуталь­ных гармоник полей.


Рис. 9.7. Геометрия открытого резонатора с несоосными зеркалом и диском
Однако в рассматриваемой задаче анализа полей в высокодобротном открытом резонаторе несоосность вносит технические, но не принципиальные затруднения. Действительно, для измерений параметров диэлектрический образец берется небольшим по срав­нению с размерами резонатора. Поэтому его внесение в резона­тор не приводит к переходу к другой моде, а лишь несколько ме­няет добротность и резонансную частоту той моды, которая су­ществовала без диэлектрика. Таким образом, за счет фильтрую­щих свойств резонатора новых азимутальных гармоник не появ­ляется и основная трудность в несоосных системах вращения сни­мается. Надо лишь следить за тем, чтобы на других азимуталь­ных гармониках у пустого резонатора не было поблизости от час­тоты рабочей моды других высокодобротных мод.

Метод решения задачи остается в общих чертах тем же, что и в предыдущем параграфе, но с некоторыми усложнениями. Главное из них — это необходимость введения двух систем ко­ординат вращения: одной, связанной с зеркалами резонатора (ось вращения у}, и второй, связанной с диэлектрическим телом (ось вращения z) (рис. 9.7). Поле, рассеянное диском, не обладает те­перь осевой симметрией по отношению к зеркалам, что сущест­венно затрудняет интегрирование по поверхности зеркал, необхо­димое при применении метода Галеркина.

Рассмотрим теперь этапы решения задачи. Как и ранее, в ме­тоде Галеркина в качестве базиса используются собственные функции пустого резонатора, а точнее, их приближенное пред­ставление в виде гауссова пучка.

Пусть центр диска по-прежнему совпадает с центром резона­тора, а ось его симметрии повернута на 90° по отношению к оси резонатора (см. рис. 9.6). Решение начинается с нахождения азимутальных гармоник падающего по отношению к диску поля и соответствующих ему первичных токов.

Падающее поле вблизи диска выражается функциями (9.54) и (9.56), которые с учетом изменившейся системы координат запишем так:
(9.59)

(9.60)
Положим, что основная поляризация поля в резонаторе . Экви­валентные токи в координатах вращения, связанных с диском, тогда имеют вид:

(9.61)

Здесь, как и в (9.58), использованы обозначения § 3.3. Переход от декартовых к координатам вращения дает

(9.62)

Коэффициенты А, В и D зависят от формы поверхности, на которой находится точка наблюдения. На плоском торце ( - радиус диска, - его толщина); на цилиндрической поверхности .

Воспользуемся малостью диэлектрического тела по сравнению с размерами резонатора, т. е. учтем, что или и . Это позволяет представить экспоненты двумя членами ря­да Тейлора

. (9.63)

После этого токи записываются в виде
(9.64)
Для следующего типа колебаний «10 q» выражения для пер­вичных токов имеют тот же вид, но A1=3A, D1=3D, B1=B. Да­лее поля разлагаются в ряд Фурье. Поскольку тело невелико, можно ограничиться небольшим числом гармоник. Используя формулы для коэффициентов ряда Фурье и интегральное пред­ставление функции Бесселя (9.21), получаем выражения для гар­моник падающих токов. При этом в силу симметрии в случае синфазных токов на зеркалах присутствуют только нечетные гар­моники, что соответствует максимуму поля резонатора в области диска:

(9.65)
Здесь

.

Переход к отрицательным индексам происходит так же, как и ранее.

После вычисления первичных токов используется алгоритм ре­шения задачи возбуждения тела вращения, основанный на уравнении (3.85). Результат получается в виде распределения азиму­тальных гармоник плотностей эквивалентных токов на поверх­ности диэлектрика.

Далее по этому распределению нетрудно рассчитать рассеян­ное поле всюду и в том числе на поверхности зеркала. Как и в § 9.4, это поле и определяет элементы матрицы однородной СЛАУ (9.48). Расчет ведется в тех же приближениях с учетом изменив­шейся системы координат. В частности, асимптотическая форму­ла для функции в этих координатах имеет вид
. (9.66)
Существенные затруднения вызывает вычисление интегралов (9.49), определяющих элементы матрицы СЛАУ (9.48).

Интеграл здесь поверхностный, т. е. двойной, и численное ин­тегрирование требует больших затрат времени ЭВМ. Выходом из положения является аналитическое вычисление одного из интег­ралов. Для этого можно воспользоваться тем, что в направлении, перпендикулярном оси (см. рис. 9.7), каждая из азимутальных гармоник рассеянного поля имеет синусоидальную зависимость. Формально удобно вести это интегрирование по декартовой координате в пределах от до . Зависимость поля будет синусоидальной только на окружности с центром, сов­падающим с диском1. Отличие этой окружности от меридиональной линии зеркала учтем только в фазе. Поправочный множитель, как показывает геометрический расчет, имеет вид .

Зависимость поля каждой гармоники от на зеркале может быть представлена только в числах, поэтому интеграл по в пределах - берется численно. Таким путем приходим к интегралу
(9.67)
где — гиперсфероидальные функции, которые берутся в приближении гауссова пучка, т. е. в виде (9.55) и (9.57).

Формула (9.67) учитывает векторный характер поля. Все рас­четы ведутся в предположении, что основная поляризация в ре­зонаторе и, следовательно, . В рассеянном поле при исполь­зовании метода Галеркина надо брать ту же поляризацию. Она в координатах вращения, связанных с диском, представляет собой . Интеграл по , как уже говорилось, можно взять аналитичес­ки. Не останавливаясь на подробностях, их можно найти в [72], заметим, что этот интеграл можно свести к неполной гамма-функ­ции. Для вычисления последней имеются быстро сходящиеся ря­ды. Нахождение одномерного интеграла по численным методом труда не представляет.

Рассмотрим некоторые результаты расчетов. Качественно они такие же, как и в случае шара (§ 9.3). С ростом действительной части диэлектрической проницаемости диска растет смещение частоты (рис. 9.8,а). Мнимая часть , т. е. , на эту величину влияет слабо. Изменение обратной величины к добротности также увеличивается с ростом за счет рассеяния на диске. Мнимая часть проницаемости заметно влияет 'на изме­нение добротности только при , когда омические потери в образце соизмеримы с потерями резонатора за счет рассеяния на диске (рис. 9.8,6).

1 Окружность показана на рис. 9.7 тонкой линией



a)

б)


Рис. 9.8. Сдвиг резонансной частоты и изменение добротности открытого ре­зонатора с диском как функция диска

Рис. 9.9 Изменение добротности открытого резонатора с диском как функция диска



Рис. 9.10. Сравнение параметров резонатора с диэлектрическим шаром и диском
К тому же выводу приходим, рассматривая параметр как функцию для различных значений . Видно, что с увеличением кривая становится все более пологой и извлечение информация об диэлектрического образца становится все более проблема­тичным (рис. 9.9).

Если считать, что 10%-ная доля омических потерь еще раз­личима на фоне потерь на рассеяние, то в области можно измерить порядка , а при только величины .

Таким образом, методом открытого резонатора можно измерять потери только очень плохих диэлектриков. Расчет связи параметров диэлектрика и характеристик резонатора для шара все же проще, чем для диска. Поэтому встает вопрос, нельзя ли установить соответствие между образцами в форме шара и диска. В качестве параметра соответствия естественно взять объем диэлектрического образца. С этой целью были рассчитаны смещения собственной частоты и изменение обратной величины добротнос­ти для шара и диска с одинаковым объемом. Оказалось (рис. 9.10), что эти зависимости, качественно одинаковые, количествен­но различаются заметно. Поэтому для получения приемлемой точности измерений необходимо тарировочные кривые строить на ос­нове адекватной математической модели.

ЗАКЛЮЧЕНИЕ, ПЕРСПЕКТИВЫ

Метод интегральных уравнений в электродинами­ке появился сравнительно недавно и быстро завоевал популяр­ность. Этому способствовал целый ряд его преимуществ: простота метода и, следовательно, его доступность; единство подходов к ре­шению весьма широкого круга задач; удобство реализации в ви­де вычислительных программ алгоритмов, на нем основанных, и, наконец, высокая степень универсальности.

Остановимся на указанных чертах метода несколько подробнее. Единство подходов к большому кругу задач означает, как видно из гл. 2 и 3, что интегральные уравнения, эквивалентные различным граничным задачам электродинамики, составляются по одному и тому же стереотипу. При этом для задач на телах вращения нет необходимости проходить стадию уравнений для произвольных тел. Истокообразные представления (3.8) и (3.9) вместе с формулами для элементов тензорной функции Грина поз­воляют" легко и быстро, примерно так же как из крупных блоков строят дома, составлять необходимые уравнения.

Те же «крупные блоки» в виде подпрограмм для -функции для элементов тензора Грина и решения систем линейных алге­браических уравнений позволяют достаточно быстро и просто компоновать программы для всех сформулированных в книге за­дач и для многих других. Те же подпрограммы дают возможность после численного решения уравнений найти поле в любой точке пространства.

3 МЕТОД СВЧ КОНТРОЛЯ ПАРАМЕТРОВ ПОЛИМЕРОВ
Для контроля технологических параметров полимеров (качества смещения, определение включений, вязкости) находят применение радиоволновые метода СВЧ. Рассмотрим метод, который характеризуется определением объёмной эффективной площади рассеяния ( ЭПР ).

ЭПР это площадь поперечного сечения некоторого фиктивного тела, которое рассеивает электромагнитную в одну, ЭПР существенно зависит от формы м ориентации тела, от его материала ЭПР, разрешаемого объема заполненного частицами ( элементарными отражателями), выражается произведением . Так для реальных полимерных материалов требуется знать распределение частиц во размерам размеры частиц в единице объёма распределены по групп и в 1-й группе содержится частиц с аффективной площадью рассеяния , то удельная объёмная ЭПР
(1)
ЭПР одной сферической частицы, диаметр которой много меньше длины волны, определяется формулой
(2)
Коэффициент , выраженный через комплексный показатель преломления изменяется от для частиц наполнителя.

Практически для большинства объектов полимерных структур

с наполнителем удельную ЭПР можно выразить формулой
(3)

Множитель

(4)

можно назвать отражаемостью, которая зависит от концентрации и размера частиц в разрезаемом элементе.

Изменение базы волны ври отражении можно определить из отпадения напряженностей поля падающей () и отраженной () волн:
, (5)
Модель этой комплексной величины , имеющей размерность длины, определяет интенсивность отражения. Аргумент указывает на изменение фазы волны при отражении.

Если рассматривать прием и передачу на одну и туже антенну, т.е. одинаковой ( согласованной) поляризацией, умножим выражение на комплексно сопряженную величину
,
В результате получаем

Это означает, что если эффективная площадь - площадь квадрата, то модель эффективной длины - это сторона того квадрата; - - точное расстояние до источника, определяющего фазу колебаний .

Для поляризованного колебания напряженность регулярного электромагнитного поля выражается вектором , который вращается с угловой скоростью и конец которого описывает эллипс в плоскости перпендикулярной направлению распространения. Если распространение происходит в направлении оси прямоугольной системы координат , определяемой ортами ,то эллиптически поляризованная волна выражается составляющими к полностью описывается четырьмя параметрами: амплитуда , и фазами . Однако не все эти параметры характеризуют поляризацию. Одинаково поляризованными называются волны, у которых эллипсы поляризации подобны и одинаково ориентированы. Абсолютное значение амплитуд, влияющие лишь на размеры эллипсов поляризации, начальная фаза , одинаковая для обеих составляющих, ив является поляризационными характеристиками.

Следовательно состояние поляризации плоской волны можно полностью определить двумя параметрами (рис.1 ).



Рис.1 Эллиптически поляризованная плоская волна
В качестве таких параметров могут служить отношение амплитуд и сдвиг фаз  ортогональных составляющих; отношение амплитуд часто заменяют углом . Поляризацию можно также задать величинами, непосредственно характеризующими форму и ориентацию эллипса: отношение главных осей эллипса углом и углом наклона главной оси (рис.1).

Система координат , в которой представлено поляризованное колебание, может быть задана парой единичных взаимно перпендикулярных векторов , . Такие ортогональные векторы - орты - называются поляризованным базисом.

В поляризованном базисе ( , ) вектор можно представить выражением

где , и , - модули и фазы комплексных амплитуд, составляющих напряженности электрического поля соответственно. Если , то поляризация линейна, при она эллиптическая. При круговой поляризации амплитуды составляющих одинаковы, а фазы сдвинуты на 90°.

Поляризационные преобразования при отражении можно представить уравнениями

связывающими ортогональные составляющие напряженности ноля падающей () и отраженной () волн, взятых в одном и том же поляризационном базисе (). Пару этих выражений можно записать в матричной форме.

Таблицу комплексных величин

называют матрицей рассеяния. В данной записи матрица рассеяния образована поляризационными составляющими эффективной длины цели.

В дальнейшем будем рассматривать в качестве основной характеристики цели матрицу эффективной длины

Матрицу эффективной длины целесообразно представить в виде


где

Таким образом, чтобы получить матрицу эффективной длины цели для однокомпозиционной схемы измерения ( т.е. антенна является приемной к передающей достаточно найти значения модулей матрицы и размерностей их аргументов .Для этог0 осуществляют излечение и прием сигналов для двух составляющих выбранного поляризационного базиса раздельно.

При излучении электромагнитных воли вертикальной поляризации и при приеме вертикально и горизонтально поляризованных составляющих отраженного сигнала, можно измерить модули и разность фаз . При излучении величин с горизонтальной линейной поляризацией находят соответственно и . Основная трудность появляется при прямом измерении разности фаз . Для этого требуется излучать раздельно по времени либо по частоте два зондирующих колебания: с горизонтальной и вертикальной поляризацией.
1   2   3   4   5   6

Похожие:

Задача обработки решетки iconТема урока: «Кристаллические решетки»
«аморфного» и «кристаллического» веществ, выявить зависимость свойств веществ от типов «кристаллических решеток», химической связи...
Задача обработки решетки iconКонспект итогового занятия по математике в подготовительной коррекционной...
Большинство технических металлов имеют кристаллические решетки: объемно-центрированную кубическую, кубическую гранецентрированную...
Задача обработки решетки icon«Тайны воды»
Теоретическое обоснование: вода отдает теплоту льду, лёд нагревается, его молекулы быстрее колеблются оставаясь в узлах кристаллической...
Задача обработки решетки icon4. технология научных исследований
Важное значение имеет задача обеспечения научных исследований удобной для восприятия информацией о важнейших научных достижениях,...
Задача обработки решетки iconЗадача 1 22 Вариант 3 22 Задача 1 22 Вариант 4 23 Задача 1 23 Задача...
«Менеджмент». Дисциплина реализуется кафедрой экономики и управления. Дисциплина нацелена на формирование общекультурных компетенций...
Задача обработки решетки iconИнтенсификация растворения кольматирующих отложений водозаборных скважин
Поэтому для повышения качества и сокращения времени обработки актуальной является задача интенсификации растворения отложений
Задача обработки решетки iconРоссийской федерации
Культиватор кпс-4 предназначен для предпосевной, сплошной обработки почвы и обработки паров с рабочей скоростью до 12 км/ч
Задача обработки решетки iconСовершенствование процессов профилирования винтовых канавок и обработки...
Специальность 05. 02. 07 – Технологии и оборудование механической и физико-технической обработки
Задача обработки решетки iconЗакон сохранения импульса
Инструктаж учителя: Оборудование для учеников два шарика (можно из модели кристаллической решетки) на стол
Задача обработки решетки iconРабочая программа учебной дисциплины «технологии обработки материалов»
Направление подготовки: 261400. 62 Технология художественной обработки материалов
Задача обработки решетки iconПрограмма дисциплины дпп. Дс. 04 Технология обработки металлов томск...
Целью преподавания дисциплины «Технология обработки металлов» является приобретение студентами системы знаний, необходимых для анализа...
Задача обработки решетки iconПоложение о музее «Аллея Славы ветеранов ВОВ управы Бирюлёво Восточное» государственного
«Аллея Славы» является одной из форм дополнительного образования в условиях гбоу сош №947, развивающей активность, самостоятельность...
Задача обработки решетки iconПрограмма по формированию навыков безопасного поведения на дорогах...
Познакомиться с понятиями: «кристаллические вещества, кристаллические решетки» с помощью икт
Задача обработки решетки iconЗадача накопления, обработки и распространения (обмена) информации...
Поскольку в эпоху книгопечатания основным носителем накапливаемой информации стала бумага, технологию накопления и распространения...
Задача обработки решетки iconИспользование информационных технологий для исследования многокомпонентных...
Руководство пользователя пакета программного обеспечения для управления сканирующим зондовым микроскопом и обработки изображений...
Задача обработки решетки iconДоктор фаустус
Иными словами, посильна ли человеку моего склада эта задача, задача, на выполнение которой меня подвигло скорее сердце, нежели право...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск