Антипролиферативное действие карнозина и его производных на опухолевые клетки нейрального происхождения





НазваниеАнтипролиферативное действие карнозина и его производных на опухолевые клетки нейрального происхождения
страница9/10
Дата публикации03.07.2015
Размер1.16 Mb.
ТипАвтореферат
100-bal.ru > Литература > Автореферат
1   2   3   4   5   6   7   8   9   10

88. van den Heuvel, S., Cell-cycle regulation. WormBook, 2005: p. 1-16.

89. Golias, C.H., A. Charalabopoulos, and K. Charalabopoulos, Cell proliferation and cell cycle control: a mini review. Int J Clin Pract, 2004. 58(12): p. 1134-41.

90. Rayess, H., M.B. Wang, and E.S. Srivatsan, Cellular senescence and tumor suppressor gene p16. Int J Cancer, 2012. 130(8): p. 1715-25.

91. Sherr, C.J. and J.M. Roberts, CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev, 1999. 13(12): p. 1501-12.

92. Kim, Y.T. and M. Zhao, Aberrant cell cycle regulation in cervical carcinoma. Yonsei Med J, 2005. 46(5): p. 597-613.

93. Caldon, C.E., et al., Cell cycle control in breast cancer cells. J Cell Biochem, 2006. 97(2): p. 261-74.

94. Nam, E.J. and Y.T. Kim, Alteration of cell-cycle regulation in epithelial ovarian cancer. Int J Gynecol Cancer, 2008. 18(6): p. 1169-82.

95. Sudakin, V., et al., The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol Biol Cell, 1995. 6(2): p. 185-97.

96. Yu, H., et al., Identification of a novel ubiquitin-conjugating enzyme involved in mitotic cyclin degradation. Curr Biol, 1996. 6(4): p. 455-66.

97. Hershko, A., Ubiquitin-mediated protein degradation. J Biol Chem, 1988. 263(30): p. 15237-40.

98. Peters, J.M., The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol, 2006. 7(9): p. 644-56.

99. Hershko, A. and A. Ciechanover, The ubiquitin system. Annu Rev Biochem, 1998. 67: p. 425-79.

100. Kastan, M.B. and D.S. Lim, The many substrates and functions of ATM. Nat Rev Mol Cell Biol, 2000. 1(3): p. 179-86.

101. Matsuoka, S., et al., Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci U S A, 2000. 97(19): p. 10389-94.

102. Hirao, A., et al., DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science, 2000. 287(5459): p. 1824-7.

103. Falck, J., et al., The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature, 2001. 410(6830): p. 842-7.

104. Robinson, M.J. and M.H. Cobb, Mitogen-activated protein kinase pathways. Curr Opin Cell Biol, 1997. 9(2): p. 180-6.

105. Roberts, P.J. and C.J. Der, Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene, 2007. 26(22): p. 3291-310.

106. Chambard, J.C., et al., ERK implication in cell cycle regulation. Biochim Biophys Acta, 2007. 1773(8): p. 1299-310.

107. Mebratu, Y. and Y. Tesfaigzi, How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle, 2009. 8(8): p. 1168-75.

108. Pages, G., et al., Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci U S A, 1993. 90(18): p. 8319-23.

109. Squires, M.S., P.M. Nixon, and S.J. Cook, Cell-cycle arrest by PD184352 requires inhibition of extracellular signal-regulated kinases (ERK) 1/2 but not ERK5/BMK1. Biochem J, 2002. 366(Pt 2): p. 673-80.

110. Sherr, C.J., Mammalian G1 cyclins. Cell, 1993. 73(6): p. 1059-65.

111. Ortega, S., M. Malumbres, and M. Barbacid, Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta, 2002. 1602(1): p. 73-87.

112. Ohtsubo, M. and J.M. Roberts, Cyclin-dependent regulation of G1 in mammalian fibroblasts. Science, 1993. 259(5103): p. 1908-12.

113. Diehl, J.A., et al., Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev, 1998. 12(22): p. 3499-511.

114. Zou, Y., et al., Mirk/dyrk1B kinase destabilizes cyclin D1 by phosphorylation at threonine 288. J Biol Chem, 2004. 279(26): p. 27790-8.

115. Musgrove, E.A., et al., Cyclin D1 induction in breast cancer cells shortens G1 and is sufficient for cells arrested in G1 to complete the cell cycle. Proc Natl Acad Sci U S A, 1994. 91(17): p. 8022-6.

116. Blomberg, I. and I. Hoffmann, Ectopic expression of Cdc25A accelerates the G(1)/S transition and leads to premature activation of cyclin E- and cyclin A-dependent kinases. Mol Cell Biol, 1999. 19(9): p. 6183-94.

117. Hsu, J.Y., et al., E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APC(Cdh1). Nat Cell Biol, 2002. 4(5): p. 358-66.

118. Bell, S.P. and A. Dutta, DNA replication in eukaryotic cells. Annu Rev Biochem, 2002. 71: p. 333-74.

119. Diffley, J.F., Regulation of early events in chromosome replication. Curr Biol, 2004. 14(18): p. R778-86.

120. Groth, A., et al., Chromatin challenges during DNA replication and repair. Cell, 2007. 128(4): p. 721-33.

121. Pines, J. and T. Hunter, Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell, 1989. 58(5): p. 833-46.

122. Ito, M., Factors controlling cyclin B expression. Plant Mol Biol, 2000. 43(5-6): p. 677-90.

123. Trembley, J.H., et al., Genomic organization and promoter characterization of the rat cyclin B1 gene. Gene, 2000. 255(1): p. 93-104.

124. Kakino, S., et al., Intracellular localization of cyclin B1 during the cell cycle in glioma cells. Cytometry, 1996. 24(1): p. 49-54.

125. Lukas, C., et al., Accumulation of cyclin B1 requires E2F and cyclin-A-dependent rearrangement of the anaphase-promoting complex. Nature, 1999. 401(6755): p. 815-8.

126. Li, J., A.N. Meyer, and D.J. Donoghue, Nuclear localization of cyclin B1 mediates its biological activity and is regulated by phosphorylation. Proc Natl Acad Sci U S A, 1997. 94(2): p. 502-7.

127. Walsh, S., S.S. Margolis, and S. Kornbluth, Phosphorylation of the cyclin b1 cytoplasmic retention sequence by mitogen-activated protein kinase and Plx. Mol Cancer Res, 2003. 1(4): p. 280-9.

128. Yang, J., et al., Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1. Genes Dev, 1998. 12(14): p. 2131-43.

129. Solomon, M.J., T. Lee, and M.W. Kirschner, Role of phosphorylation in p34cdc2 activation: identification of an activating kinase. Mol Biol Cell, 1992. 3(1): p. 13-27.

130. Sebastian, B., A. Kakizuka, and T. Hunter, Cdc25M2 activation of cyclin-dependent kinases by dephosphorylation of threonine-14 and tyrosine-15. Proc Natl Acad Sci U S A, 1993. 90(8): p. 3521-4.

131. Krek, W. and E.A. Nigg, Differential phosphorylation of vertebrate p34cdc2 kinase at the G1/S and G2/M transitions of the cell cycle: identification of major phosphorylation sites. EMBO J, 1991. 10(2): p. 305-16.

132. Palmer, A., A.C. Gavin, and A.R. Nebreda, A link between MAP kinase and p34(cdc2)/cyclin B during oocyte maturation: p90(rsk) phosphorylates and inactivates the p34(cdc2) inhibitory kinase Myt1. EMBO J, 1998. 17(17): p. 5037-47.

133. Strausfeld, U., et al., Dephosphorylation and activation of a p34cdc2/cyclin B complex in vitro by human CDC25 protein. Nature, 1991. 351(6323): p. 242-5.

134. Honda, R., et al., Dephosphorylation of human p34cdc2 kinase on both Thr-14 and Tyr-15 by human cdc25B phosphatase. FEBS Lett, 1993. 318(3): p. 331-4.

135. Graves, P.R., et al., The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J Biol Chem, 2000. 275(8): p. 5600-5.

136. Peng, C.Y., et al., C-TAK1 protein kinase phosphorylates human Cdc25C on serine 216 and promotes 14-3-3 protein binding. Cell Growth Differ, 1998. 9(3): p. 197-208.

137. Matsuoka, S., M. Huang, and S.J. Elledge, Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science, 1998. 282(5395): p. 1893-7.

138. Peng, C.Y., et al., Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science, 1997. 277(5331): p. 1501-5.

139. Dalal, S.N., et al., Cytoplasmic localization of human cdc25C during interphase requires an intact 14-3-3 binding site. Mol Cell Biol, 1999. 19(6): p. 4465-79.

140. Sanchez, Y., et al., Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science, 1997. 277(5331): p. 1497-501.

141. Furnari, B., N. Rhind, and P. Russell, Cdc25 mitotic inducer targeted by chk1 DNA damage checkpoint kinase. Science, 1997. 277(5331): p. 1495-7.

142. Foley, E.A. and T.M. Kapoor, Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol, 2013. 14(1): p. 25-37.

143. Rapkine, L., Sur les processus chimiques au cours de la division cellulaire. Ann. Physiol. Physicochim. Biol. , 1931. 7: p. 382–418.

144. Kawamura, N., Cytochemical and quantitative study of protein-bound sulfhydryl and disulfide groups in eggs of Arbacia during the first cleavage. Exp Cell Res, 1960. 20: p. 127-38.

145. Mauro, F., A. Grasso, and L.J. Tolmach, Variations in sulfhydryl, disulfide, and protein content during synchronous and asynchronous growth of HeLa cells. Biophys J, 1969. 9(11): p. 1377-97.

146. Tu, B.P., et al., Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science, 2005. 310(5751): p. 1152-8.

147. Jonas, C.R., et al., Extracellular thiol/disulfide redox state affects proliferation rate in a human colon carcinoma (Caco2) cell line. Free Radic Biol Med, 2002. 33(11): p. 1499-506.

148. Li, N. and T.D. Oberley, Modulation of antioxidant enzymes, reactive oxygen species, and glutathione levels in manganese superoxide dismutase-overexpressing NIH/3T3 fibroblasts during the cell cycle. J Cell Physiol, 1998. 177(1): p. 148-60.

149. Conour, J.E., W.V. Graham, and H.R. Gaskins, A combined in vitro/bioinformatic investigation of redox regulatory mechanisms governing cell cycle progression. Physiol Genomics, 2004. 18(2): p. 196-205.

150. Oberley, T.D., et al., Antioxidant enzyme levels as a function of growth state in cell culture. Free Radic Biol Med, 1995. 19(1): p. 53-65.

151. Sarsour, E.H., A.L. Kalen, and P. Goswami, Manganese superoxide dismutase regulates a redox cycle within the cell cycle. Antioxid Redox Signal, 2013.

152. Sarsour, E.H., et al., Redox control of the cell cycle in health and disease. Antioxid Redox Signal, 2009. 11(12): p. 2985-3011.

153. Bae, Y.S., et al., Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem, 1997. 272(1): p. 217-21.

154. Sundaresan, M., et al., Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science, 1995. 270(5234): p. 296-9.

155. DeYulia, G.J., Jr., et al., Hydrogen peroxide generated extracellularly by receptor-ligand interaction facilitates cell signaling. Proc Natl Acad Sci U S A, 2005. 102(14): p. 5044-9.

156. Krieger-Brauer, H.I. and H. Kather, Antagonistic effects of different members of the fibroblast and platelet-derived growth factor families on adipose conversion and NADPH-dependent H2O2 generation in 3T3 L1-cells. Biochem J, 1995. 307 ( Pt 2): p. 549-56.

157. Rhee, S.G., Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med, 1999. 31(2): p. 53-9.

158. Chu, C.T., et al., Oxidative neuronal injury. The dark side of ERK1/2. Eur J Biochem, 2004. 271(11): p. 2060-6.

159. Nishida, M., et al., Activation mechanism of Gi and Go by reactive oxygen species. J Biol Chem, 2002. 277(11): p. 9036-42.

160. Li, F., et al., Superoxide mediates direct current electric field-induced directional migration of glioma cells through the activation of AKT and ERK. PLoS One, 2013. 8(4): p. e61195.

161. Sun, Y. and L.W. Oberley, Redox regulation of transcriptional activators. Free Radic Biol Med, 1996. 21(3): p. 335-48.

162. Cho, Y., et al., Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science, 1994. 265(5170): p. 346-55.

163. Rainwater, R., et al., Role of cysteine residues in regulation of p53 function. Mol Cell Biol, 1995. 15(7): p. 3892-903.

164. Toledano, M.B. and W.J. Leonard, Modulation of transcription factor NF-kappa B binding activity by oxidation-reduction in vitro. Proc Natl Acad Sci U S A, 1991. 88(10): p. 4328-32.

165. Abate, C., et al., Redox regulation of fos and jun DNA-binding activity in vitro. Science, 1990. 249(4973): p. 1157-61.

166. Burch, P.M. and N.H. Heintz, Redox regulation of cell-cycle re-entry: cyclin D1 as a primary target for the mitogenic effects of reactive oxygen and nitrogen species. Antioxid Redox Signal, 2005. 7(5-6): p. 741-51.

167. Klatt, P., et al., Redox regulation of c-Jun DNA binding by reversible S-glutathiolation. FASEB J, 1999. 13(12): p. 1481-90.

168. Bergholtz, S., et al., The highly conserved DNA-binding domains of A-, B- and c-Myb differ with respect to DNA-binding, phosphorylation and redox properties. Nucleic Acids Res, 2001. 29(17): p. 3546-56.

169. Nakshatri, H., P. Bhat-Nakshatri, and R.A. Currie, Subunit association and DNA binding activity of the heterotrimeric transcription factor NF-Y is regulated by cellular redox. J Biol Chem, 1996. 271(46): p. 28784-91.

170. Menon, S.G., et al., Redox regulation of the G1 to S phase transition in the mouse embryo fibroblast cell cycle. Cancer Res, 2003. 63(9): p. 2109-17.

171. Onumah, O.E., et al., Overexpression of catalase delays G0/G1- to S-phase transition during cell cycle progression in mouse aortic endothelial cells. Free Radic Biol Med, 2009. 46(12): p. 1658-67.
1   2   3   4   5   6   7   8   9   10

Похожие:

Антипролиферативное действие карнозина и его производных на опухолевые клетки нейрального происхождения iconДиссертация на соискание ученой степени
Защитное действие карнозина, включенного в состав нанолипосом, в условиях окислительного стресса in vitro и in vivo
Антипролиферативное действие карнозина и его производных на опухолевые клетки нейрального происхождения icon«Деление клетки. Митоз»
Цель: в результате овладения содержанием модуля вы должны получить знания о непрямом делении клетки – митозе, о подготовке клетки...
Антипролиферативное действие карнозина и его производных на опухолевые клетки нейрального происхождения iconОпухоли системы крови
Опухоли системы крови или гемобластозы делят на две группы: лейкозы – системные опухолевые заболевания кроветворной ткани и лимфомы...
Антипролиферативное действие карнозина и его производных на опухолевые клетки нейрального происхождения iconУрок Кубановедения по теме «Кубанское значит качественное»
Регулятивные ууд определять и формулировать цель на уроке с помощью учителя: планировать своё действие в соответствии с поставленной...
Антипролиферативное действие карнозина и его производных на опухолевые клетки нейрального происхождения iconУрок русского языка в 7 классе на тему «Слитное и раздельное написание производных предлогов»
...
Антипролиферативное действие карнозина и его производных на опухолевые клетки нейрального происхождения iconМеханизмы гибели клеток при действии оливомицина и его производных

Антипролиферативное действие карнозина и его производных на опухолевые клетки нейрального происхождения icon«Вычисление производной»
Цель урока: закрепление формул производных основных функций и правил дифференцирования, формирование умений нахождения производных...
Антипролиферативное действие карнозина и его производных на опухолевые клетки нейрального происхождения iconПрограмма по формированию навыков безопасного поведения на дорогах...
Цель урока: изучение строения молекулы аммиака, его физических и химических свойств, роли аммиака и его производных в жизни человека...
Антипролиферативное действие карнозина и его производных на опухолевые клетки нейрального происхождения iconФеофанова наталья Александровна Влияние факторов экзогенного и эндогенного...
Опубликовал более 140 научных работ (в том числе 4 монографии, 2 учебных пособия)
Антипролиферативное действие карнозина и его производных на опухолевые клетки нейрального происхождения iconТема: Слитное и раздельное написание производных предлогов. Различение...
Цели: показать условия выбора слитного и раздельного написа­ния производных предлогов; научить отличать производные пред­логи от...
Антипролиферативное действие карнозина и его производных на опухолевые клетки нейрального происхождения iconПрограмма по формированию навыков безопасного поведения на дорогах...
Изучить строение животной клетки по рис. 6, составить таблицу «Функции органоидов клетки» (стр. 15 – 16), понятие о ферментах (с....
Антипролиферативное действие карнозина и его производных на опухолевые клетки нейрального происхождения iconХимический состав клетки
Образовательные: сформировать знания о роли химических элементов, воды, катионов, анионов, солей в жизнедеятельности клетки. Научить...
Антипролиферативное действие карнозина и его производных на опухолевые клетки нейрального происхождения iconОбщая характеристика работы
Целью настоящей работы является изучение взаимодействия производных хлорофилла а с бис (N,N-диметиламино)метаном как возможного метода...
Антипролиферативное действие карнозина и его производных на опухолевые клетки нейрального происхождения iconТехнологическая карта №2
Цели урока: Изучить строение эукариотической клетки и функции органоидов клетки
Антипролиферативное действие карнозина и его производных на опухолевые клетки нейрального происхождения iconГосударственный стандарт качества лекарственных средств общая фармакопейная статья
В зависимости от источника происхождения различают масла жирные растительного происхождения (растительные жирные масла) и масла жирные...
Антипролиферативное действие карнозина и его производных на опухолевые клетки нейрального происхождения iconНазвание раздела
Систематизировать фактические знания о строении клетки растений и животных, о функциях основных органоидов клетки, ядра, мембран


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск