Конспект лекций математическое моделирование систем управления





НазваниеКонспект лекций математическое моделирование систем управления
страница9/15
Дата публикации18.09.2013
Размер0.92 Mb.
ТипКонспект
100-bal.ru > Математика > Конспект
1   ...   5   6   7   8   9   10   11   12   ...   15

Основы оптимизации и методы синтеза систем управления


Постановка задачи параметрической оптимизации
Пусть поведение одномерной системы управления описывается дифференциальным уравнением вида:


B(p) y(t) = A(p) g(t), p = d / dt

(3.1)

.

B(p) – операторная функция преобразования. Аналогично можно записать операторную функцию A(p). Особого внимания заслуживает рассмотрение преобразования входного сигнала g(t) в выходной y(t):




(3.2)

– ядро операторного преобразования. Если в системе управления выделить вектор варьируемых параметров х, то последняя формула примет вид:




(3.3)

Пусть на качество САУ наложены ограничения вида:




(3.4)



(3.5)

| h (x, t < Tрег) - h ( х, t)|  ,

(3.6)

Здесь приняты следующие обозначения: - абсолютное значение величины перерегулирования; - статическая ошибка; h(x,t) - переходная характеристика; h (х, t) - установившееся значение переходного процесса; - требуемое значение выходной (управляемой) переменной.

Задача параметрической оптимизации для одномерной САУ, поведение которой описывается уравнением (3.3), состоит в определении таких значений компонент вектора x, принадлежащих заданной области, при которых САУ будет обладать требуемыми характеристиками. Решение задачи сложный и трудоемкий процесс, часто с трудно разрешимыми ситуациями. «Метод проб и ошибок» в поиске рациональных параметров не является эффективным. Рассмотрим решение на основе моделирования процессов в комплексной плоскости. В качестве модели САУ будем рассматривать модель вида:


Y(x, s) = W(x,s) * G(s),

(3.7)

Воспользуемся доказанным утверждением [6]. Для выполнения условий (3.4) - (3.6), налагаемых на качество управления во временной области, достаточно выполнение следующих условий в комплексной плоскости:

| s Y(x,s) - |,

(3.8)

s  , ( =  + j:   -,  > 0, |  |   || ).


(3.9)

В связи с этим задача параметрической оптимизации может быть переформулирована следующим образом. Для САУ, поведение которой описывается уравнением (3.7), требуется найти такие значения компонент вектора оптимизируемых параметров х = хопт., при которых система управления будет обладать требуемым качеством (3.8) – (3.9) за счет максимального приближения к эталоной системе управления, чтобы целевая функция F(x), характеризующая такое приближение, принимала минимальное значение .
Методика решения задачи параметрической оптимизации
Прежде чем перейти к решению задачи, рассмотрим влияние полюсов и нулей на статические и динамические характеристики системы управления.

Запишем выражение установившегося процесса на выходе одномерного объекта управления:
.

Отметим, что если нуль и полюс находятся близко друг к другу, а именно: на расстоянии менее чем 0.1 модуля, то влияние такого полюса ослабляется нулем, то есть полюс не оказывает существенного влияния на динамические характеристики системы управления. Рассмотрим пример. Пусть выходная функция Y(s) имеет вид:
, ( s1п = - 5.2, s2п = - 8, s1н = -5).

Поскольку расстояние между нулем и первым полюсом намного меньше модуля корня, то влиянием ближайшего к нулю полюса можно пренебречь, так как он оказывает несущественное влияние на динамику системы управления в целом. Рассмотрим ситуацию, когда многомерная система управления, описываемая системой уравнений (3.8), не удовлетворяет требованиям качества, это означает, что некоторые полюсы выходят за границу области  или нули оказывают отрицательное влияние на качество управления. Идеальной системой управления будем считать такую систему, которая имеет заданное расположение полюсов и нулей или заданный корневой годограф. Для решения задачи параметрической оптимизации введем в рассмотрение расположение идеальных полюсов и нулей. Известные формулы перехода от корней алгебраического уравнения к его коэффициентам позволяют найти передаточную функцию эталоной системы управления вида:


.

(3.10)

Передаточная функция оптимизируемой по параметрам системы управления может быть представлена в виде:


.

(3.11)

Таким образом, имеем эталоную передаточную функцию в виде (3.10) и реальную в виде (3.11). Метод параметрической оптимизации основан на приближении реальной системы управления к эталоной как можно ближе за счет оптимальной настройки параметров x. Введем в рассмотрение оптимизируемую функцию как средне - квадратичную ошибку аппроксимации по коэффициентам передаточных функций эталоной и оптимизируемой по параметрам систем управления. Целевая функция примет вид:



Здесь приняты следующие обозначения: al(x), - соответственно коэффициенты полиномов A(x,s) и ; bl(x), - соответственно коэффициенты полиномов B(x,s) и . Функция F(x) – алгебраическая. Для нахождения ее минимума на множестве X, заданном ограничениями вида: l(х) = 0, (l=), воспользуемся подходом основанным на введении неопределенных множителей Лагранжа [2], что предполагает решение системы уравнений вида:


Ф(x,) = F(x)+


(3.12)

где k - размерность вектора . Первые уравнения вытекают из приравнивания к нулю производных функции Ф(x, ) по переменным вектора . Минимум функций F(x) и Ф(x, ) будет достигнут в точке x = xопт, найденной из решения (3.13), если в этой точке будет выполнено условие положительности квадратичной формы ( условие Вейерштрасса):




(3.13)

где xi, xj - малые приращения компонент вектора х. Следовательно, чтобы x = xопт была точкой, в которой целевая функция принимает минимальное значение, необходимо и достаточно, чтобы в этой точке выполнялись условия (3.12) и (3.13). Для решения (3.12) используются известные методы, в частности, численный метод решения системы нелинейных алгебраических уравнений Ньютона - Рафсона. Отметим, что любые неравенства, накладываемые на неизвестные параматры вектора х, можно привести к равенствам, вводя дополнительные неизвестные. Например, пусть имеем ограничение вида: х<5, которое можно переписать в виде: х=5 - х, где х дополнительно вводимый параметр, подлежащий определению наравне с остальными параметрами вектора х.

Рассмотрим применение методики параметрической оптимизации на конкретной задаче.
Проектирование САР с ПИД - регулятором в контуре управления
Пусть задана схема управления в виде:


В схеме известен вид передаточных функций звеньев:
Wp = kp; W i= ki /s; Wd = kd s; Wор (s) = k / (s + a).

Нужно найти значения вектора параметров x = (kp, ki, kd), при которых корни si характеристического уравнения замкнутой системы будут принадлежать области качества , определяемой параметрами = 2, 1. Решение будем строить по шагам:

  1. Найдем передаточную функцию разомкнутой системы управления:


Wраз. (x, s) = (kp + ki/s + kds) k /(s + a) = k(skp + ki + kds2)/(s(s +a)).

  1. Определим передаточную функцию замкнутой системы:


.

  1. Запишем характеристическое уравнение замкнутой системы:


.

4. Зададим эталоное расположение корней характеристического уравнения

и по ним составим характеристическое уравнение:
, = s2 + 5s + 6 = 0.

  1. Cоставим целевую функцию F(x) на основе минимизации невязок коэффициентов двух характеристических уравнений:


.

Отметим, что поскольку на параметры вектора х не наложены ограничения, то имеем дело с задачей безусловной оптимизации. Для достижения минимума положительной квадратичной функции F(x) достаточно, чтобы нулю равнялись все три слагаемые, а именно:


Если мы используем необходимое и достаточное условие минимальности F(x), то получаем следующую систему уравнений:


Поскольку оптимизируемая функция является положительной квадратичной, она имеет один экстремум – минимум и, следовательно, нет необходимости проверять условие Вейерштрасса, то есть положительность квадратичной формы.

Рассмотрим алгоритм параметрической оптимизации для многомерной САУ. Его применение предполагает выполнение следующих этапов:

  1. Задание схемы САУ, передаточных функций звеньев, вектора оптимизируемых параметров х, ограничений (x), начального значения

х = х0.

  1. Выполнение декомпозиции схемы на каналы вход - выход.

  2. Нахождение матрицы W(x,s).

  3. Анализ качества системы управления по расположению нулей и полюсов матрицы W(x,s) при х = х0. Если качество удовлетворительно, то нужно перейти к п.9.

  4. Задание эталоной системы управления в виде .

  5. Формирование целевых функций Ф(x,), F(x).

  6. Решение задачи оптимизации для Ф(x,) min или F(x) min.

  7. Вывод результатов в виде значений вектора х.

  8. Конец алгоритма.


При автоматизации производственных процессов возникает задача выбора типового регулятора и определение его параметров, обеспечивающих заданное качество управления объектом. При этом обычными приемами синтеза регулятора являются: выбор закона регулирования в виде уравнений динамики регулятора; определение передаточной функции САР; исследование САР на устойчивость; определение параметров настройки регулятора в соответствии с требованиями, налагаемыми на качество управления. Если не удается настроить параметры регулятора должным образом, то проектирование продолжается в направлении усложнения регулятора. Под сложностью регулятора понимают порядок его уравнений. Обычно сложность регулятора не превышает сложности объекта регулирования.
1   ...   5   6   7   8   9   10   11   12   ...   15

Похожие:

Конспект лекций математическое моделирование систем управления iconМатематическое моделирование систем управления
Программа составлена в соответствии с требованиями фгос впо по направлению подготовки 080200 Менеджмент
Конспект лекций математическое моделирование систем управления iconМатематическое моделирование термически нагруженных конструкций котельных агрегатов
Специальность: 05. 13. 18 – Математическое моделирование, численные методы и комплексы программ
Конспект лекций математическое моделирование систем управления iconПрограмма вступительного экзамена в аспирантуру по специальности...
В основу настоящей программы положены следующие дисциплины: функциональный анализ, теория дифференциальных уравнений, теория управления,...
Конспект лекций математическое моделирование систем управления iconПояснительная записка рабочая программа дисциплины «Иностранный язык...
«Математика и компьютерные науки», 010500. 62 «Математическое обеспечение и администрирование информационных систем», 230100. 62...
Конспект лекций математическое моделирование систем управления iconФгбоу впо «сгэу» от 09. 11. 2012г. № Решение ученого совета Самарского...
«Математическое моделирование», «Математические модели в финансовых операциях», «Методы оптимизации», «Экономико-математические методы...
Конспект лекций математическое моделирование систем управления iconМатематическое моделирование экономических систем
«Основы математического моделирования экономических систем» должно способствовать развитию у студентов более глубокого понимания...
Конспект лекций математическое моделирование систем управления iconИсследование систем управления процесс определения организационной...
Место исследований систем управления в комплексе дисциплин по теории и практке управления
Конспект лекций математическое моделирование систем управления iconКонспект лекций по курсу "Микропроцессоры и микро-эвм в Персональной...
Целью настоящего курса является дать понятие о микропроцессорах и однокристальных микро-эвм, области их применения, дать основы функционирования...
Конспект лекций математическое моделирование систем управления iconРабочая программа для студентов 010800. 62 специальности «Механика...
Мосягин В. Е. Теория вероятностей, математическая статистика, случайные процессы. Учебно-методический комплекс. Рабочая программа...
Конспект лекций математическое моделирование систем управления iconРабочая программа учебной дисциплины современные технологии математического...
Специальность научных работников: 05. 13. 18 «Математическое моделирование, численные методы и комплексы программ»
Конспект лекций математическое моделирование систем управления iconКонспект лекций по дисциплине: теория систем и системный анализ санкт-Петербург...
Выбор показателя эффективности, математическая постановка задачи
Конспект лекций математическое моделирование систем управления iconРабочая программа учебной дисциплины современные технологии программирования...
Специальность научных работников: 05. 13. 18 «Математическое моделирование, численные методы и комплексы программ»
Конспект лекций математическое моделирование систем управления iconМоделирование систем автоматического управления с дробным пид-регулятором
В данной работе разработан цифровой алгоритм управления на основе дробного пид-регулятора и построена имитационная модель системы...
Конспект лекций математическое моделирование систем управления iconВсероссийский фестиваль методических разработок "конспект урока"
М 20 Математическое моделирование биотехнологических процессов: Методические указания к самостоятельной работе [Текст] / сост. П....
Конспект лекций математическое моделирование систем управления iconН. Ф. Гусева Чухломского муниципального района Костромской области Конспект
М 20 Математическое моделирование биотехнологических процессов: Методические указания к самостоятельной работе [Текст] / сост. П....
Конспект лекций математическое моделирование систем управления iconРабочая программа учебной дисциплины проектирование информационных...
Целью дисциплины является: изучение методологии структурного анализа, моделирование информационных систем в стандарте idef, проектирование...


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск