Н. Д. Зелинского к. Я. Бурштейн П. П. Шорыгин квантовохимические расчеты в органической химии и молекулярной спектроскопии





НазваниеН. Д. Зелинского к. Я. Бурштейн П. П. Шорыгин квантовохимические расчеты в органической химии и молекулярной спектроскопии
страница4/14
Дата публикации06.07.2013
Размер1.93 Mb.
ТипКнига
100-bal.ru > Химия > Книга
1   2   3   4   5   6   7   8   9   ...   14

Рис. 1.2. Орбитальное взаимодействие реагентов Х и У

Энергию орбитального взаимодействия можно оценить во втором порядке теории возмущений [2]:



Здесь сумма по i берется по всем занятым (первое слагаемое) и всем вакантным (второе слагаемое) МО X, сумма по j берется по всем вакантным (первое слагаемое) и занятым (второе слагаемое) МО Y, сумма по k берется по всем АО X, по l — по всем АО Y; βkl— коэффициент, имеющий размерность энергии; Сik и Сjl — коэффициенты разложения МО Х и Y по базисным АО; Sij — интеграл перекрывания; Е*i, E*j, Еi и Ej — энергии МО φ*Xi, φ*Yj, φXi и φYj.

Стабилизация системы X...Y за счет орбитального взаимодействия любых пар МО обратно пропорциональна разности их энергий, т.е. чем дальше друг от друга лежат орбитали на шкале энергий, тем слабее они взаимодействуют. Поэтому на практике обычно пользуются приближением граничных орбиталей, т.е. учитывают взаимодействие лишь между двумя МО, для которых разность энергий мини­мальна. В этом приближении энергия орбитального взаимодействия зависит от энергий граничных МО и от коэффициентов разложения этих МО по базису АО. Любую из этих величин можно использовать в качестве индекса реакционной способности, но наиболее часто пользуются разностью энергий граничных МО. Так, в работах [34, 35] при изучении реакции Дильса—Альдера циклических диенов (циклопентадиена, гексахлорциклопентадиена и тетрахлор-1,2-бензохинона) с диенофилами (монозамещенными ацетиленами, сопряженными аминами, сопряженными диенами и триенами) была обнаружена корреляция между выходами конечных продуктов реакции и положением граничных МО на шкале энергий. Этот результат свидетельствует, что для данной реакции определяющую роль играет орбитальное взаимодействие.

Индексы реакционной способности весьма широко применяются в прикладной квантовой химии, однако с их помощью можно решать лишь весьма ограниченный круг вопросов. В большинстве случаев они не позволяют определить ни направление, ни относительную скорость реакции, поэтому для изучения реакционной способности органических соединений приходится применять более сложные ме­тодики (расчеты тепловых эффектов и поверхностей потенциальной энергии). В качестве примера рассмотрим результаты работы [36], в которой был изучен механизм присоединения СН-кислот типа XCH22Et (X = CO2Et, COMe, CN) к α,β-непредельным альдегидам в условиях межфазного катализа. Из эксперимента было известно, что эта реакция может идти по двум направлениям: карбанион, генери­рованный из СН-кислоты, может присоединяться к карбонильному атому углерода и к β-атому углерода связи С=С.

Предполагалось, что в первом случае направление реакции опре­деляется электростатическим взаимодействием (зарядовый контроль), а в во втором — орбитальным (орбитальный контроль). Влияние за­местителей на направление присоединения при этом объясняли из­менением относительной величины электростатического и орбиталь­ного взаимодействий. Однако результаты квантово-химических рас­четов [36] показали, что это не так. Оказалось, что такие заместители, как хлор, метильная и фенильная группы, практически не меняют относительную величину орбитального и электростатического взаимо­действий, хотя и меняют направление присоединения.

Все попытки объяснить влияние заместителей на направление реакции с помощью статических индексов реакционной способности окончились безрезультатно. Дальнейшее исследование показало, что в данном случае на направление присоединения основное влияние оказывает стерический эффект. Мы специально привели этот пример, так как при изучении присоединения заряженного реагента к нена­сыщенному атому углерода, как правило, удается найти корреляцию между направлением присоединения и индексами реакционной спо­собности (обычно π- или π+σ-электронными зарядами на атомах), но даже и здесь, как видим, есть исключения. Для других классов органических реакций область применения индексов реакционной способности уменьшается.

В заключение этого раздела подчеркнем еще одно очень важное обстоятельство. При поиске корреляций между индексами реакцион­ной способности и выходами продуктов реакции необходимо рас­полагать достаточно большим материалом для сравнения. Если имеются данные лишь для 5—7 родственных соединений, то статистическая вероятность сделать ошибочное заключение будет очень велика. Кроме того, при поиске корреляций между результатами квантово­химических расчетов для газофазных моделей и данными эксперимента, полученными в растворе, необходимо помнить, что растворитель очень сильно меняет электронную структуру ионов, при этом наиболее значительно меняются энергии МО.
1.4. ВЫЧИСЛЕНИЕ ТЕПЛОТ ОБРАЗОВАНИЯ

Теплоты образования молекул являются фундаментальными термо­химическими величинами. Однако их значение для многих орга­нических соединений неизвестны, поэтому квантовохимические расчеты этих величин представляют большой интерес с точки зрения органической химии.

Параметры полуэмпирических методов МЧПДП/3 и МПДП по­добраны так, чтобы наилучшим образом воспроизвести экспериментальные теплоты образования органических соединений при нормальных условиях. Средняя ошибка при вычислении теплот образования молекул методом МЧПДП/3 составляет 38 кДж/моль, а методом МПДП — 25 кДж/моль [37].

Сложнее вычислить теплоты образования и теплоты атомизации молекул неэмпирическими методами. Даже для небольших мо­лекул неэмпирический расчет в базисе 6-31ГФ* приводит к ошибкам в теплотах образования, превышающим 100 кДж/моль. Это связано с неполнотой использованного базиса и неучетом энергии электронной корреляции. С увеличением размера молекулы ошибки в неэмпирически вычисленных теплотах образования хотя и возрастают, но в значительной степени носят систематический характер. Поэтому их можно уменьшить с помощью коррекции конечных результатов по аддитивной схеме. Если предположить, что при образовании молекул из атомов ошибки вследствие неполноты использованного базиса и пренебрежения электронной корреляцией одинаковы для всех моле­кул, то при вычислении энергий атомизации ЕА можно воспользоваться следующей формулой:



где Е — полная энергия молекулы, вычисленная неэмпирическим методом;

np — число атомов с номером р (р — номер атома в перио­дической системе элементов)

в молекуле; εр — эмпирический (коррек­тирующий) параметр для атома с номером р; сумма берется по всем атомам с номерами р, из которых состоит молекула. В коррек­тирующие инкременты можно включить также энергию нулевых коле­баний.
Таблица 1.4 Экспериментальные теплоты образования и ошибки при вычислении этих величин квантовохнмнческимн методами (кДж/моль)

Молекула

Экспериментальная величина НА

Ошибка при вычислении методом

3-21ГФ

6-31ГФ*

МПДП

Метан

-75

-4

2

25

Этан

-85

1

8

2

Пропан

-104

2

8

0

Этилен

-52

-7

-10

12

Пропилен

21

8

-10

0

цис-Бутен-2

-8



15

-9

транс-Бутен-2

-13

-13

13

-9

Н2С=СМе2

-18

-16

12

9

Н2С=С=СН2

192

-11

-29

-8

Н2С=СН-СН=СН2

109

-20

52

12

С2Н2

228

-7

-33

12

CH3C≡CH

186

2

-25

-15

CH3C≡CСН3

146

2

20

-44

НС≡С-С≡СН

475

6

45

-46

Циклопропан

53

-35

-10

-6

Циклопропен

278

-77

-44

8

Циклобутен

158

-47

-34

-26

Бензол

83

-11

45

6

Н2О

-243

-20

-11

-14

Н2О2

-136

77

13

-24

СО

-111

39

56

85

СО2

-395

31

64

79

СН3ОН

-202

22

-21

-39

С2Н5ОН

-236

23

-20

-29

СН2О

-109

15

33

-29

НСООН

-381

47

-54

-8

CH3CHO

-167

15

83

-11

CH3COCH3

-218

17

-32

10

CH3OCH3

-185

48

-44

-30

NH3

-46

-4

-17

20

N2H4

96

32

-8

-36

цис-HN=NH

214

-33

-16

-72

HN3

295

-72

44

11

CH3NH2

-23

14

0

-8

CH3NНCH3

-18

22

8

-9

HCN

136

37

5

11

CH3CN

88

58

14

-8

СН3

150

34



102

N≡C—C≡N

310

94

6

-33

HNO2

-79

-15



-92

N2O

80

-64

-16

47

Средняя ошибка




29

25

26
1   2   3   4   5   6   7   8   9   ...   14

Похожие:

Н. Д. Зелинского к. Я. Бурштейн П. П. Шорыгин квантовохимические расчеты в органической химии и молекулярной спектроскопии iconТематическое планирование по химии 11 класс
Предмет органической химии. Краткий исторический очерк: виталистическая теория. Связь органической и неорганической химии. Органические...
Н. Д. Зелинского к. Я. Бурштейн П. П. Шорыгин квантовохимические расчеты в органической химии и молекулярной спектроскопии iconПрограмма по формированию навыков безопасного поведения на дорогах...
Повторение курса органической химии. Строение и номенклатура органических веществ. Вывод молекулярной формулы вещества
Н. Д. Зелинского к. Я. Бурштейн П. П. Шорыгин квантовохимические расчеты в органической химии и молекулярной спектроскопии iconПрограмма по формированию навыков безопасного поведения на дорогах...
Знать : определение органической химии, что изучает данная наука; различия между органическими и неорганическими веществами, особенности...
Н. Д. Зелинского к. Я. Бурштейн П. П. Шорыгин квантовохимические расчеты в органической химии и молекулярной спектроскопии iconТема Форма проведения
Свойство атомов углерода образовывать прямые, разветвленные и замкнутые цепи, одинарные и краткие связи. Гомология, изомерия. Значение...
Н. Д. Зелинского к. Я. Бурштейн П. П. Шорыгин квантовохимические расчеты в органической химии и молекулярной спектроскопии iconКлючевые слова
Ключевые слова: структура молекул, водородная связь, ик спектроскопия, спектроскопия ямр, квантовохимические расчеты, молекулярные...
Н. Д. Зелинского к. Я. Бурштейн П. П. Шорыгин квантовохимические расчеты в органической химии и молекулярной спектроскопии iconУчебно-методический комплекс учебной дисциплины методика изучения...
Программа учебной дисциплины обсуждена и утверждена на заседании кафедры органической химии Протокол №9 от 23. 05. 2012 г
Н. Д. Зелинского к. Я. Бурштейн П. П. Шорыгин квантовохимические расчеты в органической химии и молекулярной спектроскопии iconОсновные результаты, полученные в исследованиях по оптике и спектроскопии,...
Методические указания разработаны кандидатом физико-математических наук, доцентом Нойкиным Ю. М
Н. Д. Зелинского к. Я. Бурштейн П. П. Шорыгин квантовохимические расчеты в органической химии и молекулярной спектроскопии iconРабочая программа по дисциплине ен. Ф. 04. 2 Органичская химия
Целью дисциплины является освоение системы знаний о фундаментальных законах, теориях, фактах органической химии необходимых для понимания...
Н. Д. Зелинского к. Я. Бурштейн П. П. Шорыгин квантовохимические расчеты в органической химии и молекулярной спектроскопии iconХарактеристика молекулярной патологии в увеальных меланомах
Работа выполнена в лаборатории молекулярной генетики человека нии молекулярной медицины Московской медицинской академии им. И. М....
Н. Д. Зелинского к. Я. Бурштейн П. П. Шорыгин квантовохимические расчеты в органической химии и молекулярной спектроскопии iconПрограмма дисциплины дпп. Ф. 10 Органический синтез цели и задачи...
Курс «Органический синтез» проводится после изучения систематического курса органической химии и выполнения практических работ малого...
Н. Д. Зелинского к. Я. Бурштейн П. П. Шорыгин квантовохимические расчеты в органической химии и молекулярной спектроскопии iconМагнитной радиоспектроскопии в биофизических и медико-биологических исследованиях
Диамагнетизм и парамагнетизм атомов и молекул. Ядерный магнетизм. Основы эпр-спектроскопии и ямр-спектроскопии
Н. Д. Зелинского к. Я. Бурштейн П. П. Шорыгин квантовохимические расчеты в органической химии и молекулярной спектроскопии iconПрограмма по формированию навыков безопасного поведения на дорогах...
Элективный курс предназначен для учащихся 10-х классов, изучающих химию на базовом уровне. Курс рассчитан на 34 часа. Введение данного...
Н. Д. Зелинского к. Я. Бурштейн П. П. Шорыгин квантовохимические расчеты в органической химии и молекулярной спектроскопии iconПрограмма по формированию навыков безопасного поведения на дорогах...
Элективный курс предназначен для учащихся 10-х классов, изучающих химию на базовом уровне. Курс рассчитан на 34 часа. Введение данного...
Н. Д. Зелинского к. Я. Бурштейн П. П. Шорыгин квантовохимические расчеты в органической химии и молекулярной спектроскопии iconРабочая программа дисциплины Теоретические основы органической химии...
Целями освоения дисциплины Теоретические основы органической химии биологически активных добавок являются
Н. Д. Зелинского к. Я. Бурштейн П. П. Шорыгин квантовохимические расчеты в органической химии и молекулярной спектроскопии iconРеакции гетероциклизации с участием цианаминопиранов
...
Н. Д. Зелинского к. Я. Бурштейн П. П. Шорыгин квантовохимические расчеты в органической химии и молекулярной спектроскопии iconУрок по химии по разделу «Химические реакции в органической химии»
Раннев П. П. Философия религии : Учебно-метод комплекс. Ростов н/Д.: Изд-во рсэи, 2011. 63 с


Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
100-bal.ru
Поиск